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Abstract

This dissertation examines game theory models in the context of persuasion and

competition wherein decisionmakers are boundedly rational by considering two com-

plementary threads of research. The first thread of research pertains to offensive and

preemptively defensive behavioral models of influence, and the second thread of re-

search discussed herein pertains to behavioral and behaviorally robust approaches to

deterrence and other military operations via the utilization of behavioral game theory

and mathematical programming under uncertainty.

Persuasion is a fundamental element of human interaction applied to both individ-

uals and populations. Although persuasion is a well-studied, interdisciplinary field of

research, this work advances its prescriptive, quantitative characterization and future

use. That is, this research complements the qualitative psychological literature with

respect to the processing of persuasive messages by developing an offensive influence

campaign design framework. We adapt the classic Decision Analysis problem to a

bilevel mathematical program, wherein a persuader has the opportunity to affect the

environment prior to the decisionmaker’s choice. Thereby, we define a new class of

problems for modeling persuasion. Utilizing Cumulative Prospect Theory as a de-

scriptive framework of choice, we transform the persuasion problem to a single level

mathematical programming formulation, adaptable to conditions of either risk or un-

certainty. These generalized models allow for the malleability of prospects as well as

Cumulative Prospect Theory parameters through persuasion update functions. We

detail the literature that supports the quantification of such effects which, in turn,

establishes that such update functions can be realized. Finally, the efficacy of the

model is illustrated through three use cases under varying conditions of risk or un-
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certainty: the establishment of insurance policies, the construction of a legal defense,

and the development of a public pension program.

However, in an influence setting, it may be the case that multiple actors com-

pete over a population’s decisions. This is especially true in modern international

relations. As such, this work presents two new game theoretic frameworks, denoted

as prospect games and regulated prospect games, to inform defensive policy against

these threats. These frameworks respectively model (a) the interactions of competing

entities influencing a populace and (b) the preemptive actions of a regulating agent to

alter such a framework. Prospect games and regulated prospect games are designed

to be adaptable, depending on the assumed nature of persuaders’ interactions and

their rationality. The contributions herein are a modeling framework for compet-

itive influence operations under a common set of assumptions, model variants that

respectively correspond to scenario-specific modifications of selected assumptions, the

illustration of practical solution methods for the suite of models, and a demonstra-

tion on a representative scenario with the ultimate goal of providing a quantifiable,

tractable, and rigorous framework upon which national policies defending against

competitive influence can be identified.

Moreover, even when acting in isolation, the central task of an influencing entity

is confounded by uncertainty of either a structural or parametric form. The research

herein also sets forth a modeling framework to identify robust influence strategies

under such uncertain conditions. Furthermore, the utility of this framework and

its proper parameterization are illustrated via an application to the contemporary,

global problem of the Afghan opium trade. Utilizing a variety of open source data,

we demonstrate how counternarcotic policy can be informed using a quantitative

method that embraces the bounded rationality of the economy’s decisionmakers and

the government’s uncertainty regarding the degree of this deviation from rationality.

v
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In this manner, we provide a new framework from which robust influence decisions

can be made under realistic information conditions, and elucidate how it can be used

to inform real-world policy.

Related to the second thread of research, since Thomas Schelling published The

Strategy of Conflict (1960), the study of game theory and international relations have

been closely linked. Developments in the former often trigger analytical changes in

the latter, as evidenced by the recent behavioral and psychological focus among some

international relations and defense economics scholars. Despite this connection, de-

cisions regarding military operations have rarely been influenced by game theoretic

analysis, a fact often attributed to standard game theory’s normative nature. There-

fore, this research applies selected behavioral game theoretic solution techniques to

classical interstate conflict games, demonstrating their utility to inform the plan-

ning of military operations. By reexamining classic Cold War deterrence models and

other interstate conflict games, we demonstrate how modern game theoretic tech-

niques based upon agent psychology, as well as the ability of agents to think strate-

gically or learn from past experience, can provide additional insights beyond what

can be derived via perfect rationality analysis. These demonstrations illustrate how

behaviorally focused methods can incorporate the uncertainty related to human deci-

sionmakers into analysis and highlight the alternative insights a bounded rationality

approach can generate for military operations planning.

Under the assumption that a nation’s adversaries are boundedly rational, the final

contribution defines a methodology for strategy identification. That is, recent ad-

vances in behavioral game theory address a persistent criticism of traditional solution

concepts that rely upon perfect rationality: equilibrium results are often inconsistent

with empirical evidence. For normal-form games, the Cognitive Hierarchy model is a

solution concept based upon a sequential reasoning process, yielding accurate char-

vi
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acterizations of experimental human game play. However, to derive predictions using

Cognitive Hierarchy, an accurate estimate of the average number of reasoning steps

players utilize is required. Such information is generally unknown ex ante and is a

source of uncertainty in practice. Moreover, the Cognitive Hierarchy model, like much

research in game theory, analyzes a game holistically. Herein, we adopt a different

approach, considering the normal-form game as a decision problem from the perspec-

tive of an arbitrary player. Assuming such a player is confronting a set of boundedly

rational opponents whose play is characterized by the Cognitive Hierarchy model,

we develop a suite of six mathematical programming formulations to maximize the

player’s minimum payoff, with the appropriate model identifiable under varying lev-

els of information with respect to their opponents’ reasoning abilities. By leveraging

robust optimization, stochastic programming, and distributionally robust optimiza-

tion techniques, our set of models yields prescriptive strategies of how a normal-form

game should be played. A software package implementing these constructs is de-

veloped and applied to illustrative instances, demonstrating how these behaviorally

robust strategies vary in accordance with the underlying uncertainty.

vii
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PERSUASION, POLITICAL WARFARE, AND DETERRENCE: BEHAVIORAL

AND BEHAVIORALLY ROBUST MODELS

I. Introduction

1.1 Motivation

The evolution of war’s manifestation - its character - is evident in history. The

development of stirrups enabled Genghis Kahn’s armies to advance and apply cav-

alry tactics to overwhelm their enemies and conquer the steppes of Asia (Saunders,

2001). The advent of the longbow and the use of highly trained archers changed the

character of war as exhibited at the Battle of Crecy (Burne, 2016). More recently,

beginning in the American Civil War and more fully exhibited during World War I,

the development of weapons having greater firepower and higher rates of fire, along

with the tactics to use them, marked the ascendancy of the defense over the offense

in wars of attrition or exhaustion (United States Military Academy, 2014a,b). In

World War II, the character of warfare changed with the use of armored forces, close

air support, and well-coordinated combined arms (United States Military Academy,

2015a,b).

However, students of Clausewitz would argue that such changes in war’s man-

ifestation do not imply a change in its essence, i.e., the nature of war. Although

technology and tactics may evolve over time, its nature is unchanging.

Clausewitz (1989) described war as an “instrument of policy” that uses “violence

intended to compel our opponent to fulfill our will.” Therefore, warfare can be consid-

ered to be a type of violent persuasion. An enemy is confronted with multiple courses
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of actions, and we try to impel them to choose one in accordance with our preferences.

In the contemporary operating environment, other methods beyond physical violence

are often utilized to achieve the same objective. The character of warfare is currently

undergoing a shift from a kinetic to a narrative focus. Fueled by modern technology,

the weaponized use of communication is a critical piece of political warfare (Kennan,

1948; Boot and Doran, 2013; Polyakova and Boyer, 2018), hybrid warfare (United

States Government Accountability Office, 2010; Kofman and Rojansky, 2015), influ-

ence operations (Larson et al., 2009), and information operations (United States Joint

Chiefs of Staff, 2012; Air University, 2018).

Therefore, we contend that key elements of war’s underlying nature can be rep-

resented within the purposeful manipulation of an adversary’s decision tree. Such

manipulation may affect how the adversary perceives the underlying uncertainty, val-

ues the payoff associated with each outcome, and/or evaluates the available set of

prospects. In conventional conflict, examples of how these effects may be achieved

respectively include military deception (e.g., Operation Fortitude in WWII), combat

engineering (e.g., countermobility obstacles and defensive structures), and shows of

force (e.g., Freedom of Navigation operations). If such actions are successful, an ad-

versary acts in accordance with our will, and the underlying desired effect has been

achieved.

When considering international competition prior to war, a similar dynamic holds.

However, we must now consider manipulating a decision tree via alternative means.

A simplification of this dynamic can be seen in Figure 1 wherein the adversary wishes

to adopt COA 1, but we desire them to select COA 2. In conventional conflict, these

underlying choices are replaced with the respective proxies of “Fight” and “Surren-

der”.

Moreover, it is interesting to note that this type of hybrid warfare does not limit
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Figure 1. A Decision Analysis Visualization of International Conflict

itself to affecting the decisions of a nation’s leadership. The target of an attack is

often a nation’s citizenry. Russian aggression has illustrated this numerous times on

both the United States and its NATO allies (DHS and FBI, 2016; The Economist,

2019). These tactics have been shown to be sufficiently effective that some experts

suggest such acts of political warfare may become the “default mode for conflict in

the coming decades” (Cohen and Robinson, 2018).

1.2 Research Objectives and Scope

This research aims to address this evolved character of 21st Century warfare.

New technologies must be accompanied by changes in tactics to use them effectively.

Political warfare is a reality, and its current application is best characterized as an art,

because we currently lack the science of tools and tactics necessary to best utilize

it in either an offensive or defensive setting. This work seeks to make a first step

towards developing useful models to advance strategy and tactics in conflicts below

the threshold of conventional war.

To ensure the effectiveness of these modeling efforts, we advocate for the use

of behavioral theories. Various studies (e.g., Kahneman and Tversky, 1979; Selten,

1998; Gigerenzer and Selten, 2002) have shown human decision making to diverge

from perfect rationality and, when building models of persuasion, such limitations
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must be considered. Behavioral theories are informed by psychological studies, often

taking the form of human subject testing, and have proven themselves effective to

describe human behavior.

This dissertation examines game theory models in the context of persuasion and

competition wherein decisionmakers are not completely rational by considering two

complementary threads of research. The first thread of research pertains to offensive

and preemptively defensive behavioral models. Research in this thread makes three

notable contributions. First, an offensive modeling framework (i.e., a persuasion

program) is created to identify how an entity optimally influences a populace to take

a desired course of action. In doing so, we summarize the foundational literature upon

which future research can build to effectively parameterize such models, and illustrate

the utility of the framework over a variety of civil applications. Second, a defensive

modeling framework is defined wherein a regulating entity (e.g., a government) takes

action to bound the behavior of multiple adversaries simultaneously attempting to

persuade a group of decisionmakers. Third, an offensive influence modeling framework

under conditions of ambiguity is developed in accordance with historical information

limitations, and we demonstrate how it can be used to select a robust course of action

on a specific, data-driven use case.

The second thread of research pertains to behavioral and behaviorally robust ap-

proaches to deterrence and other military operations. Research in this thread makes

two notable contributions. First, we demonstrate the alternative insights behavioral

game theory generates for the analysis of classic deterrence games, and explicate the

rich analysis generated from its combined use with standard equilibrium models. Sec-

ond, we define behaviorally robust models for an agent to use in a normal form game

under varying forms of uncertainty in order to inform deterrence policy decisions.

Both of these research threads pertain to some form of influence; the first considers
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influence at a more tactical level (e.g., a targeted information operation) whereas

the second is more strategic (e.g., deterring hostile enemy aggression). Both research

threads rely on descriptive theories and explore solution methods when the adversary’s

behavior is uncertain; however, the first thread focuses on behavioral theories of choice

and the second on behavioral game theory.

Finally, we note that influence is a central component of a variety of civilian

activities as well (e.g., marketing, criminal justice, politics). As such, the models de-

veloped herein are described in general terms and their relevance to national security

is elucidated via representative use cases.

1.3 Organization of the Dissertation

Chapters II through IV of this dissertation pertain to the development of of-

fensive and defensive behavioral influence models. Chapter II defines the general

persuasion program enabling an influencing entity to optimally engage a population

under conditions of either risk or ambiguity. This generalized model utilizes tools

from Cumulative Prospect Theory, Support Theory, and nonlinear optimization to

identify optimal offensive behavior in an influence operation. Chapter III builds upon

the general persuasion program by modeling additional influencing entities as well as

a preemptive, regulating agent. Using non-linear optimization techniques, a suite of

models are developed for the regulating agent to bound the behavior of the influencing

entities under varying rationality assumptions and game theoretic solution concepts.

In Chapter IV, we extend the general persuasion program presented in Chapter II

while retaining its original persuader-populace structure. We focus on parametric and

structural uncertainty associated with the populace’s behavior, and the identification

of behaviorally robust strategies given these knowledge limitations. The efficacy of

this methodology for real-world policy development is then illustrated on an Afghan
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counternarcotic use case informed by open-source UN, American, Afghan and NGO

data.

Chapters V and VI concern behavioral and behaviorally robust approaches to de-

terrence. In Chapter V we illustrate how the Cognitive Hierarchy and Experience

Weighted Attraction algorithms can be utilized to inform military operations plan-

ning. This topic is extended in Chapter VI, wherein we develop a suite of mathemat-

ical programs for the selection of robust strategies given this underlying behavioral

uncertainty.

Chapter VII provides concluding remarks and the two appendices provide relevant,

supplemental material. The first appendix illustrates how the general persuasion pro-

grams of Chapter II can be extended when decisionmakers are assumed to maximize

expected utility. The second appendix documents an ancillary research contribution

regarding the identification of erroneous reports of instance infeasibility when solv-

ing power program problems with a leading commercial solver for global optimization

(i.e., BARON), as well as the development and testing of theoretically-grounded mod-

eling techniques to reduce their occurrence, thereby enhancing solver efficacy. Such

a computational challenge was identified (and resolved favorably, in most instances

tested) when solving a simplified form of the persuasion program presented in Chapter

II.
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II. Influence Modeling: Mathematical Programming
Representations of Persuasion under Either Risk or

Uncertainty

Abstract

Persuasion is a fundamental element of human interaction applied to both in-

dividuals and populations. Although persuasion is a well-studied, interdisciplinary

field of research, this work advances its prescriptive, quantitative characterization and

future use. That is, this research complements the qualitative psychological litera-

ture with respect to the processing of persuasive messages by developing an influence

campaign design framework. We adapt the classic Decision Analysis problem to a

bilevel mathematical program, wherein a persuader has the opportunity to affect the

environment prior to the decisionmaker’s choice. Thereby, we define a new class of

problems for modeling persuasion. Utilizing Cumulative Prospect Theory as a de-

scriptive framework of choice, we transform the persuasion problem to a single level

mathematical programming formulation, adaptable to conditions of either risk or un-

certainty. These generalized models allow for the malleability of prospects as well as

Cumulative Prospect Theory parameters through persuasion update functions. We

detail the literature that supports the quantification of such effects which, in turn,

establishes that such update functions can be realized. Finally, the efficacy of the

model is illustrated through three use cases under varying conditions of risk or un-

certainty: the establishment of insurance policies, the construction of a legal defense,

and the development of a public pension program.
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2.1 Introduction

Persuasion is ever-present in human society. Television advertisements persuade

consumers to buy a product. Parents convince children to eat their vegetables. Laws

outlining punishment persuade citizens to abide by certain behaviors. A suitor per-

suades their beloved to marry, and a government attempts to influence other countries

in the realm of international relations. Such ubiquitous activities are well-studied in

a variety of disciplines but are not addressed frequently in a prescriptive, quantitative

manner. Therefore, we formalize herein a new class of decision problems which can

mathematically model persuasion and its influence on others, in either situations of

risk when outcome probabilities are known, or uncertainty when they are unknown.

Many persuasion scenarios can be modeled with a framework similar to that used

in the discipline of Decision Analysis. Using Prescriptive Decision Analysis when

outcomes of a given choice are not deterministic, an advisor often represents problems

as decision trees to help a client take the best action in accordance with the axioms

of Expected Utility Theory (EUT). Such a methodology is applicable in the context

of risk or uncertainty (e.g., casino games or stock prices, respectively). The approach

is identical in either setting with the exception that uncertainty requires a subjective

assessment of outcome probabilities. The generic Decision Analysis problem of an

individual choosing between |J | options (i.e., choosing among a set of prospects, J)

can be represented via a mathematical programming formulation as follows.

max
ζ

∑
j∈J

ζjEU(j)

subject to
∑
j∈J

ζj = 1, (1a)

ζj ∈ {0, 1} , ∀ j ∈ J. (1b)
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The value EU(j) =
∑

k∈Kj pjkujk, where Kj are all possible outcomes that can oc-

cur from a selection of prospect j, each occurring with non-negative probability pjk

and having utility ujk units to the decisionmaker. At optimality, the prospect cor-

responding to ζ∗j = 1 is the option that will maximize the decisionmaker’s expected

utility.

We now reexamine the Prescriptive Decision Analysis problem by assuming the

advisor is no longer altruistic but self-interested with a distinct preference on what

alternative the decisionmaker selects. Consider a perfectly rational, risk-neutral de-

cisionmaker selecting between two risky prospects as illustrated by the decision tree

shown in Figure 2, and a persuader with three available actions (i.e., a1, a2, and a3).

Each decision tree represents the discrete set of feasible decisions available to the

lower-level decisionmaker(s), whereas the utilities represented at the leaf nodes of

the tree respectively depend on the upper-level persuader’s actions via the indicated

functions.

The persuader affects the decision problem prior to prospect selection and desires

the decisionmaker to choose prospect B subject to the constraints listed. For an

interested reader, the Appendix details an explicit model of this influence setting.

Although this particular instance can be solved by inspection (e.g., a1 = a2 = 0, a3 >

216.67 is one of many alternative optimal solutions), it provides a simple illustration

of influence in a decision analysis setting. Likewise, such influence problems can be

represented as bilevel programs:
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Figure 2. Simple Influence Example under Risk for Risk-Neutral, EUT Decisionmaker

max
a

Φ

subject to a ∈ A,

max
ζ,Φ

∑
j∈J

ζjEU(j),

s.t. Constraints (1a)− (1b),

EU(j) = f1 (a) , ∀ j ∈ J,

Φ = f2 (ζ) ,

Φ ∈ {0, 1} .

Within the bilevel programming framework, the lower player is the individual

being persuaded and who selects the prospect maximizing their expected utility. The

upper-level player is able to affect the individual’s expected utility through some

action a from a larger action space A to maximize the binary persuasion indicator

variable Φ. At optimality, the prospect corresponding to ζ∗j = 1 is the prospect

selected by the decisionmaker, and a value of Φ∗ = 1 indicates that such a prospect

is the one preferred by the persuader.

The persuader’s actions are designed to induce some selection, indicating the

modeling of choice must be governed by the decisionmaker’s psychology. However,
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it is well documented that without assistance, humans violate the Expected Utility

paradigm (e.g., see Andreoni and Sprenger, 2010). As evidenced by the constant

consequence and constant ratio paradoxes, decisionmakers do not always make choices

that maximize expected utility. Therefore, the corresponding behavioral decision

problem of an individual choosing between |J | options can be represented as

max
ζ

∑
j∈J

ζjDU(j)

subject to Constraints (1a)− (1b),

wherein DU(j) represents the subjective utility of a prospect j ∈ J under some

descriptive theory of choice (e.g., Kontek and Lewandowski, 2017)

Given the bounded rationality exhibited in empirical psychological testing, we

contend a descriptive theory of choice is most appropriate to model human persuasion.

Utilizing such a descriptive model, the problem of influencing an individual to adopt

a desired course of action can be represented as follows:

max
a

Φ

subject to a ∈ A,

max
ζ,Φ

∑
j∈J

ζjDU(j),

s.t. Constraints (1a)− (1b),

DU(j) = g1 (a) , ∀ j ∈ J,

Φ = g2 (ζ) ,

Φ ∈ {0, 1} .

For the remainder of this research, Cumulative Prospect Theory (CPT) is utilized

to model the descriptive utility, DU(j), for reasons described in Section 2.2 (Tversky
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and Kahneman, 1992). Under this theory, a prospect f having n gain outcomes and

m loss outcomes, indexed separately as 1 through n and -m through -1, each with

value xk from the reference point is evaluated via CPT as

V (f) = V +(f) + V −(f),where

V +(f) =

n∑
k=1

π+
k v(xk),

V −(f) =

0∑
k=−m

π−k v(xk),

π+
n = W+(An),

π−−m = W+(A−m),

π+
k = W+(Ak ∪ ... ∪An)−W+(Ak+1 ∪ ... ∪An), 0 ≤ k ≤ n− 1

π−k = W+(A−m ∪ ... ∪Ak)−W+(A−m ∪ ... ∪Ak−1), 1−m ≤ k ≤ 0.

All outcomes Ak are indexed in ascending order of their corresponding xk-value.

W+ and W− are the event weighting functions for gains and losses, respectively.

The values π+ and π− are the decision weights utilized to determine the respective

component gains, V +(f), and component losses, V −(f), in conjunction with a utility

function v(·) that is concave for gains and convex for losses.

Whereas CPT is often viewed as a theory of decision making under risk, Tversky

and Fox (1995) illustrated its applicability to decision making under uncertainty, and

that the uncertainty weighting function demonstrated similar behavior to the prob-

ability weighting function. Moreover, Fox and Tversky (1998) demonstrated that

decisions under uncertainty can be modeled suitably using a two-stage method. In

the first stage, probability judgments comporting with support theory (Tversky and

Koehler, 1994) are first ascertained to characterize and quantify the uncertainty and,

in the second stage, these results are substituted into the original CPT framework

that accounts for risk. Utilizing these results, we incorporate CPT into our mathe-

12



www.manaraa.com

matical programming representations of persuasion under both conditions of risk and

uncertainty.

Our modeling framework unifies and augments three separate strands of research:

decision analysis problems, cheap talk games, and multi-level programs. Within the

context of the Decision Analysis discipline, our work considers a self-interested advisor

(i.e., persuader) as opposed to one who is altruistic. It is unique in the realm of cheap

talk games to allow for multiple, lower-level players who assess the value of an outcome

via Cumulative Prospect Theory; to address uncertain outcomes; and to enable the

upper-level players to adopt a wider range of actions. Finally, the modeling framework

is original in the context of multi-level programming by modeling a principal-agent(s)

problem with the incorporation of behaviorist methods applied to the lower-level

players in a stochastic, Stackelberg framework.

Therefore, in a manner akin to Fry and Binner (2016) and Becker-Peth and Thone-

mann (2016), our research also furthers the Behavioral Operations Research paradigm

described in Hämäläinen et al. (2013) with respect to incorporating agent psychol-

ogy in problem solving situations. More specifically, this work advances the Behav-

ioral Operations Research thread referenced by Franco and Hämäläinen (2016) that

“concentrates on the use of the OR approach to model human behavior in complex

settings” by combining quantitative psychology theories with mathematical program-

ming. In this way, our work is akin to that of Shi and Lian (2016), Keller and Kat-

sikopoulos (2016), and Argyris and French (2017) who adopt a behavioral perspective

in queuing theory, heuristic optimization, and multi-criteria decision analysis appli-

cations, respectively, as our research attempts to address the task outlined in Becker

(2016) of developing a “close connection with the core disciplines of OR”.

The remaining of this paper is structured as follows. In Section 2.2, we pro-

vide an overview of scholarly research pertaining to persuasion and also explain why

13



www.manaraa.com

CPT is selected as the preferred theory of descriptive utility. In Section 2.3, we de-

velop single-level mathematical programming formulations of the descriptive bilevel

persuasion problem corresponding to situations exhibiting risk and uncertainty, re-

spectively. Therein, we establish the soundness of our modeling methodology, as

supported by literature that quantitatively documents experimental evidence of the

underlying theories, and which portends the ability to parameterize instances of our

models. In Section 2.4, we provide illustrative instances of the models’ use: one under

risk, one under uncertainty with an evidence strength metric, and one under uncer-

tainty without an evidence strength metric. Section 2.5 discusses the implications of

this research, its limitations, and the potential for application.

2.2 Relevant Literature

We begin by providing a multi-disciplinary review of persuasion literature to il-

lustrate the relevance of our models and emphasize their complementary nature to

previous studies. The section concludes with a discussion of alternative frameworks

for decision making under uncertainty and defends subsequent modeling choices.

Persuasion.

Persuasion has been widely studied in the field of social psychology. Gass and

Seiter (2015) defined persuasion as an “activity of creating, reinforcing, modifying

or extinguishing beliefs, attitudes, intentions, motivations, and/or behaviors within

the constraints of a given communication context”. Thus, persuasion is not limited

to speech, as it may include any number of action types. Scholars in this field have

extensively studied persuasion and propaganda. Research conducted immediately fol-

lowing World War I attempted to describe the effects of messaging on attitude (Jowett

and O’Donnell, 2014). During World War II emphasis was placed on understanding
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propaganda, counterpropaganda, attitudes, and persuasion (Jowett and O’Donnell,

2014).

In recent history, the focus shifted alternatively to predicting or altering future

behavior (Jowett and O’Donnell, 2014). Many formal theories of persuasion have

been presented. Two prevailing models in social psychology are the Elaboration

Likelihood Method and the Heuristic Systematic Method (Gass and Seiter, 2015). The

Elaboration Likelihood Method postulates two distinct avenues of persuasion: central

and peripheral processing. Central processing encapsulates conscious deliberation of

a message whereas peripheral processing involves the effect of stimuli not directly

related to a message (e.g., a salesperson’s pitch vis-a-vis their physical appearance).

The Heuristic Systematic Method also proposes that persuasion occurs through two

avenues (i.e., deliberate systematic processing and instinctive heuristic processing)

but contends that messages can traverse both paths simultaneously.

Related ideas in social psychology are the Theory of Cognitive Dissonance, Expo-

sure Theory, and the Theory of Planned Behavior. The Theory of Cognitive Disso-

nance postulates that humans desire a state of cognitive consistency in thought and

will change opinions and/or behavior in order to achieve it (Festinger, 1957). In con-

trast, Exposure Theory propounds that people who are highly exposed to an idea are

more likely to accept it. The content or quality of the idea is not nearly as important

as the frequency of exposure; the mere comfort of familiarity is the convincing factor

(Zajonc, 2001). Finally, the Theory of Planned Behavior hypothesizes that a person’s

choices of behavior are influenced by societal pressures; individual perception, power,

and attitude; and other factors facilitating or inhibiting the choice (Ajzen, 1991).

Scholars in the field of Communications focus less on the mental processing of

persuasion and more on the features of the messaging itself. Shen and Bigsby (2013)

presented a thorough literature review regarding the effects of message content, struc-
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ture, and style on persuasion and provided an overview of how these features interact.

The effect of messaging is also well studied in Economics, particularly with regard

to games of incomplete information. It is common in such games for players to en-

gage in signaling, an act of providing or receiving information which may be costly

or, in cheap talk, a similar but cost-free information sharing action. In this setting,

emotions of the players are generally disregarded, and perspectives are manipulated

according to the tenants of Expected Utility Theory. Signaling games and cheap

talk are covered extensively by Shoham and Leyton-Brown (2008) with a unique fo-

cus on natural language processing. Chakraborty and Harbaugh (2010) and Croson

et al. (2003) discussed applications of cheap talk and its potential consequences in

persuasion and bargaining games.

With a view towards applying persuasion operations, agents often attempt to ma-

nipulate subjective and emotional assessments to gain support. For instance, recruit-

ing efforts by terrorist organizations usually involve a radicalization process wherein

recruits’ political or world views are shaped to align with the group’s interests. Mc-

Cauley and Moskalenko (2008) described a variety of tactics utilized for radicalization

such as isolation, personal victimization, and the use of political grievances. Other

behavioral modification campaigns are central to Military Information Support Op-

erations (MISO) designed to influence the behavior of foreign governments, organi-

zations, groups, or individuals (Boyd, 2011). To implement a successful persuasion

operation, an agent must understand the effects of one’s actions on a decisionmaker.

However, such knowledge is not only useful in the development of offensive messag-

ing, but it also provides insight regarding how to counter persuasion operations (e.g.,

counter-terrorist organizations, influence resistance campaigns).

The field of Marketing has a long history of studying how to sway opinions. Belk

(2007) described the evolution of commercial marketing research from a focus on de-
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scriptive data to qualitative research. The qualitative research the author describes

is focused on understanding the underlying motivation for consumer behavior. How-

ever, the qualitative study of persuasion is ill-equipped to solve strategic marketing

allocation problems. In this vein, Cetin and Esen (2006) tailored the weapon target

assignment model to marketing campaigns, but they focused on budget and schedul-

ing constraints while largely abstaining from psychological factors. Therefore, the

next evolution in commercial marketing research is arguably a transition from quali-

tative to quantitative influence modeling. Our research provides the initial models to

make such an advance with the necessary incorporation of qualitative psychological

effects. Moreover, our research provides the impetus to perform the psychological

and physiological experiments necessary to make this advance (e.g., see the consumer

research described in Ares and Varela, 2018).

Similar concepts to those discussed by Belk (2007) have been applied to Social

Marketing, wherein the underlying goal is to influence behavioral patterns within a

society for the greater good. Kotler and Zaltman (1971) described the power and lim-

itations of such applications and explained how social marketing has been conducted

by churches to increase their attendance, by charities to generate income, and even by

symphonies to draw a larger audience. Many non-profit groups have tried to engineer

such social change against drug or tobacco use in the United States (Truth Initiative,

2018). Research in criminology has advocated the use of similar social marketing

tactics to reduce crime of varying types (Homel and Carroll, 2009). With regard to

politics, the role of emotion in campaigns has been studied by Brader (2005), wherein

he determined that emotional appeals in campaign ads can affect voter behavior.

Brader (2005) concluded that “emotionally evocative ads do not simply sway voters

directly, but change the manner in which voters make choices”. These overarching

changes in decision making are part of what we seek to model within a prescriptive,
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quantitative approach to the problem of persuasion.

Other Models for Decision Making Under Uncertainty.

We choose to utilize CPT as our framework for decision-making under conditions

of either risk or uncertainty. This choice is driven by (1) the interpretation of CPT

as a characteristic of intuitive thinking (Kahneman, 2011) and the deep heuristic-

and-bias decision-making literature describing how to affect such thought processes

(Kahneman and Tversky, 1972, 1981; Park and Lessig, 1981; Tversky and Kahneman,

1981; Taylor, 1982), and (2) CPT’s applicability to risk and uncertainty (Kahneman

and Tversky, 1979; Fox and Tversky, 1998).

Other models that challenge the preeminence of CPT as a descriptive model were

considered but set aside. For example, the Adaptive Toolbox proposed by Gigerenzer

and Selten (2002) purports that a collection of situational specific cognitive heuris-

tics are utilized when acting under uncertainty. Historically, the Adaptive Toolbox

framework has been the leading competitor of CPT. However, we choose to not utilize

this framework due to the disaggregated, environment-specific nature of its models.

CPT provides a single mathematical model that can be applied without regard to the

underlying decision environment, whereas the Adaptive Toolbox provides a variety of

methods to be utilized in differing environments. Furthermore, Pachur et al. (2017)

demonstrated how a variety of boundedly rational heuristics exhibit characteristic

CPT parameter profiles. If a decisionmaker is assumed to use such a heuristic deci-

sionmaking process, their behavior can be incorporated into our models by utilizing

the appropriate profile.

Other, less established alternatives to CPT exist, but they are not well suited

for a general persuasion model. The Decision-by-Sampling (DbS) model proposed by

Stewart et al. (2006) describes decision making as a process of binary, ordinal com-
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parisons of an attribute with past experiences; it does not assume a stable probability

weighting or utility function, and argues its comparative framework is the founda-

tion of CPT-characteristic behavior. DbS supports the notion of affecting choice via

persuasion, but it may restrict actions to only those based on the Exposure The-

ory of messaging. More recently, Kontek and Lewandowski (2017) proposed Range

Dependent Utility (RngDU) as a model describing the same decision making para-

doxes addressed by CPT, albeit without the use of probability weighting. Instead,

each lottery in a specified range of low and high outcomes possesses its own utility

function, and a single decision utility function can be derived by linearly scaling the

utility of all lotteries (i.e., with the lowest possible utility having a value of zero and

the highest utility having a value of one). The linearity-in-probability is a convenient

feature for calculation, and the authors claim RngDU to be a better predictive model

for multi-outcome prospects compared to CPT by providing comparative examples

from the literature. However, the RngDU theory is relatively nascent and does not

yet incorporate loss aversion. In contrast, the mathematical framework presented

in CPT provides a well-established and generally accepted quantitative manner to

describe psychological and qualitative phenomena related to persuasion that can be

adapted to accommodate other descriptive theories of choice.

2.3 Influence Modeling

Herein, we set forth the mathematical programming formulation describing how

a persuader can optimally interact with a subset of individuals based upon assump-

tions of how persuasive actions affect each prospect, as well as respective individuals’

evaluation of the prospects.

To provide proper context prior to introducing the model, we detail the litera-

ture supporting the viability of quantifying the parameter update functions included
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within our modeling framework (e.g., general functional forms to represent the effect

of persuasion on prospect characteristics or decisionmaker risk attitude) which, in

turn, establishes that such update functions can be realized. Often, the components

comprising an individual’s risk attitude (e.g., the probability weighting and utility

functions) are assumed to be static, cognitive features. However, modern psycho-

logical and neuroeconomic studies have shown risk attitudes to be dynamic traits

affected by emotional, pharmacological, and other context-dependent factors (e.g.,

Kugler et al., 2012; Lempert and Phelps, 2014; Stewart et al., 2015). The following

section introduces readers to related parametric-oriented research before providing the

General Persuasion Program (GPP) variants for conditions of risk and uncertainty.

The Parameter Update Functions.

Two fundamental assumptions underlying our GPP models are (1) a persuader’s

actions can influence an individual’s perception of the probability and utility of out-

comes for a given prospect, and (2) such impacts can be quantified. In this section, we

address the literature that supports the quantification of such effects which, in turn,

establishes that these effects can be realized. Given a thorough review of findings in

the literature that are supported by well-conducted human subjects research, we find

evidence that influence on the perception of an outcome’s likelihood, the perception

of an outcome’s value, and an individual’s cumulative prospect theory parameters

each can be quantified.

Of course, if a persuader has direct control over the source of risk (uncertainty)

or the event outcomes (e.g., a casino), the update functions for these parameters are

readily apparent. However, a persuader may still be able to influence how individ-

uals perceive an event’s likelihood or its utility in situations wherein there exists no

formal, direct control mechanism. We find justification in the psychological literature
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pertaining to human evaluation of uncertainty and decision-making. Lerner et al.

(2015) detailed extensively the psychological literature that empirically shows the ef-

fects of emotion on risk perception. For example, fearful people tend to see greater

risk whereas angry people perceive less risk, and prideful individuals view gains as in

their control whereas surprised individuals view gains as unpredictable (Lerner and

Keltner, 2000; Lerner et al., 2015). Furthermore, in the heuristic-and-bias approach

of statistical reasoning (Kahneman and Tversky, 1979; Kahneman, 2011), the affect,

representativeness, and availability heuristics, as well as their derivatives (e.g., the

simulation and fluency heuristics), demonstrate how superfluous information can al-

ter the perceived likelihood of an event or the value of its outcome (Kahneman and

Tversky, 1981; Hertwig et al., 2008; Kahneman, 2016). In a persuasion setting, the

source of this information is simply a self-interested external agent. The Tom W. ex-

periments of Kahneman and Tversky (1973) demonstrate such an interaction through

representativeness; the authors affect the participants’ perception of probability by

controlling the stimuli used to make this judgment.

With specific regard to the probability weighting and utility functions, Stewart

et al. (2015) observed statistical evidence concerning their malleable shapes. The

authors found that the “manipulation of the distribution of gains [and] risks... sys-

tematically changes the utility, weighting, and discounting functions”, and they con-

cluded that these functions are not stable but are instead context dependent. As the

probability weighting and utility functions collectively describe risk attitude, their

results also imply its malleability. This is confirmed by Kugler et al. (2012) who

demonstrated that fear and anger alter an individual’s risk attitude, by Ariely and

Loewenstein (2006) who found a similar effect in men due to sexual arousal, and by

numerous economists who have examined the effect of past losses on the risk attitudes

of stock brokers (e.g., Thaler, 1985; Weber and Zuchel, 2005; Liu et al., 2010). How-
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ever, with few exceptions, such changes are not quantified in terms of the associated

CPT-parameters (Campos-Vazquez and Cuilty, 2014; Schulreich et al., 2014)

When affecting decision under uncertainty, the belief-based model by Fox (1999) il-

lustrates that the probability weighting function parameters may be affected through

a source preference appeal. The authors provided evidence of the competence hy-

pothesis such that ambiguity aversion is reversed in situations wherein a person feels

knowledgeable of the source. It is suggested that this effect can be accounted for

by varying a parameter in the probability weighting function. Therefore, if the per-

suader has some control over the source of uncertainty, they may be able to affect

the weighting function parameters by appealing to an individual’s preference. Similar

results could be accomplished by adapting an individual’s perception of the source of

uncertainty, perhaps through education.

Likewise, since the “loss aversion [parameter] is volatile and depends much on

framing” (Wakker, 2010), there exists empirical evidence of its malleability. Plott

and Zeiler (2005) were able to make it disappear completely when participants were

explicitly instructed on loss aversion and framing effects. Gächter et al. (2007) showed

that loss aversion increases with age, wealth, and income but decreases with educa-

tion. Furthermore, the correlation found with respect to activity in areas of the brain

when confronted with gains and losses by Tom et al. (2007) suggest that, if these

areas can be stimulated when a participant is facing a decision, perhaps loss aversion

can be altered. Moreover, Lerner et al. (2004) found emotional stimuli to reverse the

endowment effect, implying emotions affect either the loss aversion parameter or the

frequency of outcome evaluation.

With regard to reference points, their manipulation depends largely on the decision

context. For example, if the decision to be made is measured in monetary units, the

persuader may be able to move the reference point by instituting fines or payments
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before a lottery is selected. In general, the perception of reference points is highly

susceptible to framing effects which can be controlled, to some extent, by a persuader

(Tversky and Kahneman, 1981; Wakker, 2010).

Moreover, if an Adaptive Toolbox heuristic (e.g., Gigerenzer and Selten, 2002) is

assumed to be employed for a decision problem, the results of Pachur et al. (2017)

imply the malleability of CPT parameters. That is, if a decisionmaker can be com-

pelled to switch from one heuristic to another, the parameter update functions can

map the change from one heuristic’s CPT parameter profile to another.

Ultimately, risk and value perception, as well as an individuals CPT parameters,

are mathematical constructs designed to capture cognition. From a neuroeconomic

perspective, they all arise from neuronal interactions in a dynamic brain learning from

a dynamic world. Therefore, the hypothesis that these elements are static and not

malleable is incongruent with the field’s underlying tenets. Such a perspective is doc-

umented with numerous works published within Neuroeconomics: Decision Making

and the Brain edited by Paul Glimcher and Ernest Fehr, to include studies focusing

on the effects of emotions and pharmacology in decisions under risk and uncertainty

(Lempert and Phelps, 2014; Crockett and Fehr, 2014).

Acknowledging that such a mapping is feasible, as evidenced by the quantifiable

impacts of persuasion on decisionmakers’ CPT parameters via the published liter-

ature, we seek to demonstrate the utility of such mappings via our mathematical

programming formulations and several use cases in Section 2.4.

Proposed Model under Risk.

Herein, we develop a single level representation of the aforementioned bilevel math

programming formulation to represent the effects of persuasion on a human decision-

maker under conditions of risk with a generic upper level objective function. This
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model is general in that it concerns influencing multiple decisionmakers, each of whom

may have different values for their Cumulative Prospect Theory parameters, to prefer

a certain prospect (i.e., become supporters). In this setting, a persuader may have

multiple, competing objectives; it may be desired to achieve a threshold of support

at minimum cost, to maximize the number of supporters, to optimize a weighted

combination of both objectives, or any number of variants. However, the majority of

these objectives are concerned with the number of supporters and the persuasion ac-

tions utilized. As such, we represent the objective function within our mathematical

programming formulation as a generic function of these variables. Likewise, our gen-

eral model allows for the malleability of Cumulative Prospect Theory parameters via

persuasion operations, and so the perceived outcomes and probabilities of individual

prospects can be affected accordingly. Our models, therefore, can accommodate a

range of persuasive actions, to include the intentional triggering of the incidental af-

fect wherein an emotion unrelated to the decision can shift choices. This phenomena

is well document in the neuroscience literature but, to our knowledge, has not been

adapted to quantitative decision models (Lempert and Phelps, 2014). The models

presented are therefore versatile; however, if one disagrees with the malleability of a

parameter subset, it can be assumed constant and the optimization formulations are

still applicable. Such applications are illustrated in Section 2.4.

We begin by introducing the requisite sets, parameters, decision variables, and

intermediary decision variables. In defining the model, we use the single parameter

weighting function and utility functions originally set forth by Tversky and Kahne-

man (1992). However, other probability weighting functions or utility functions can

readily be used by substituting their functional forms and parameters in the corre-

sponding constraints.
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Sets

I : Set of targeted members upon which persuasion is being conducted of the form I = {1, 2, ...}

Ji : Set of ni prospects offered to each member i of the form Ji = {1, ..., ni}

Kij : Set of mij events (i.e., outcomes) for member i in prospect j of the form Kij = {1, ...,mij}

A : Space of feasible persuasion actions

Parameters

qi : Preferred prospect in Ji that persuader wants member i to support

ŷijk : Baseline raw value for kth event of prospect j for member i before persuasion

p̂ijk : Baseline probability of kth event of prospect j for member i before persuasion

γ̂i : Baseline gain probability weighting coefficient for member i before persuasion

δ̂i : Baseline loss probability weighting coefficient for member i before persuasion

α̂i : Baseline gain utility coefficient for member i before persuasion

β̂i : Baseline loss utility coefficient for member i before persuasion

λ̂i : Baseline loss aversion coefficient for member i before persuasion

r̂i : Baseline reference point for member i before persuasion

∆ : Discriminable Factor for favored prospect

M : Arbitrary, sufficiently large real number

We assume a set of members, I, are offered a set of prospects, Ji. Members

of I can be individuals or aggregate demographic populations, depending on the

setting. The set Ji has ni prospects which may or may not be unique to each member.

Each prospect j ∈ Ji has mij potential events. The effect on the editing phase on

these events is determined a priori. Also, the value of an event before persuasion as

discerned from some measure is represented by ŷijk and its associated probability by

p̂ijk.

The persuader desires for each member i to select a prospect qi. By taking ac-
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tion(s), represented by the vector a ∈ A, the persuader is able to potentially affect

the outcomes and probabilities for each prospect, or alter a member’s baseline ref-

erence point, loss aversion, probability weighting, and utility curvature parameters,

depending on the specific assumptions of the functional forms that adapt our general

model to a specific context.

Primary Decision Variables

a : Vector of influence operations conducted

T+
ijkk′ : Equal to 1 if the kth event of prospect j faced by member i is the (mij − 1 + k′)th

greatest gain among events in Kij , and 0 otherwise, defined for all (i, j) combinations

T−ijkk′ : Equal to 1 if the kth event of prospect j faced by member i is the (k′)th greatest

loss among events in Kij ,and 0 otherwise, defined for all (i, j) combinations

Φi : Binary indicator equal to 1 if member i strongly favors prospect qi, 0 otherwise

zqiij : Binary indicator for qi 6= j that equals 1 if member i prefers prospect qi to

prospect j, 0 otherwise

sposij : Positive portion of difference in prospect values qi and j for member i

snegij : Negative portion of difference in prospect values qi and j for member i

Ψij : Binary variable enforcing that both sposij and snegij cannot be positively-valued

CPT relies upon a rank-based ordering of each prospect’s outcomes to properly

calculate its value. If we allow the persuader’s actions to change outcome values,

their probabilities, and a member’s Cumulative Prospect Theory parameter values,

then the original ordering of a prospect’s events can change. As such, a mapping

is developed to ensure the events are indexed in ascending order of their outcome

values for use in the probability weighting functions. The binary variables T+
ijkk′

form a matrix mapping of unordered gains to ordered gains, and T−ijkk′ a mapping of

unordered losses to ordered losses. Applied simultaneously, T+
ijkk′ and T−ijkk′ create a
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mapping that sorts the updated gains and losses in ascending order.

The variable Φi equals one if a member i strictly prefers prospect qi to all others.

A strict preference is induced versus a weak preference (i.e., strict versus weak in-

equality) to ensure that members who are indifferent among qi and some other subset

of prospects are not misrepresented as supporters via an optimistic assumption by

the persuader. Members demonstrating such indifference may or may not be sup-

portive, and we assume a conservative persuader will presume them to be the latter.

Likewise, the discriminable factor ∆ enables the persuader to specify a minimum

difference value between prospects such that a member is identified as a supporter.

Binary comparisons between prospects are represented via zqiij ; this binary variable

equals one if member i prefers prospect qi to prospect j, and zero otherwise. The

variables sposij and snegij are utilized to quantify either the positive or negative difference

between prospect qi and prospect j, wherein sposij > 0 indicates prospect qi is preferred

and snegij > 0 indicates the converse is true. Finally, Ψij is utilized in the ensuing math

programming formulation to ensure that only sposij or snegij may be positively valued.

Intermediate Decision Variables

fijk(a) : Persuasion effect on event kth raw outcome value for prospect j and member i

gijk(a) : Persuasion effect on event kth probability for prospect j and member i

hθi (a) : Persuasion effect on curvature, distortion, loss aversion or reference point

parameters for member i

xijk : Gain/loss for member i for kth event of prospect j after persuasion

pijk : Probability of kth event of prospect j for member i after persuasion

γi : Gain probability weighting coefficient for member i after persuasion

δi : Loss probability weighting coefficient for member i after persuasion

αi : Gain utility curvature coefficient for member i after persuasion

27



www.manaraa.com

βi : Loss utility curvature coefficient for member i after persuasion

λi : Loss aversion coefficient for member i after persuasion

ri : Reference point for member i after persuasion

t+ijk′ : Ascending rank based list of xijk gains corresponding with mapping T+
ijkk′

t−ijk′ : Ascending rank based list of xijk losses corresponding with mapping T−ijkk′

b+ijk′ : Corresponding probabilities for sorted t+ijk′ events

b−ijk′ : Corresponding probabilities for sorted t−ijk′ events

π+
ijk′ : Gain decision weight for member i for k′th event of prospect j after persuasion

π−ijk′ : Loss decision weight for member i for k′th event of prospect j after persuasion

The intermediate decision variables are functions of the primary decision variables.

The variables xijk and pijk respectively represent the updated events, in terms of

gains or losses from the updated reference point, and the updated probabilities of

these events after persuasion. Likewise, the variables γi, δi, αi, βi, λi, and ri are

the probability weighting, utility curvature, loss aversion, and reference point values

after persuasion, respectively. The effects of persuasion on outcomes, probabilities,

and prospect theoretic parameters are correspondingly represented by the values fijk,

gijk, and hθi , where θ is an index on the functional parameters γi, δi, αi, βi, λi, and

ri. The list of updated gains and losses in ascending order is represented by t+ijk′ and

t+ijk′ , respectively, with associated probabilities b+
ijk′ and b−ijk′ . The last six intermediate

decision variables are drawn from Tversky and Kahneman (1992), wherein π+
ijk′ and

π−ijk′ are the decision weight values derived from the probability weights w+(b+
ijk′ , γi)

and w−(b−ijk′ , δi), and V +(xijk′ , αi) and V −(xijk′ , βi) are the values of updated gains

and losses, respectively.

As previously mentioned, other probability weighting functions can be utilized

if their parameters and functional forms are substituted as appropriate. However,
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the decision regarding which probability weighting function is most appropriate de-

pends on the modeling context. If members are aggregate populations, the Tversky

and Kahneman (1992) form can be expected to estimate the weighting function well

(Gonzalez and Wu, 1999). However, under the assumption that members of the set

I are individuals instead of groups, a two-parameter probability weighting function

such as the Linear-in-Log-Odds or Prelec’s compound invariance functions may be

most appropriate (Cavagnaro et al., 2013).

General Persuasion Program (GPP) Formulation

max f(Φi,a) (2a)

subject to

Parameter Update Constraint Set

xijk + ri = ŷijk + fijk(a), ∀i ∈ I, j ∈ Ji, k ∈ Kij , (2b)

pijk = p̂ijk + gijk(a), ∀i ∈ I, j ∈ Ji, k ∈ Kij , (2c)

θi = θ̂i + hθi (a), ∀i ∈ I, θ = {γ, δ, α, β, λ, r}, (2d)

Ordering Constraint Set

mij∑
k=1

T+
ijkk′ + T−ijkk′ = 1, ∀i ∈ I, j ∈ Ji, (2e)

mij∑
k′=1

T+
ijkk′ + T−ijkk′ = 1, ∀i ∈ I, j ∈ Ji, (2f)

t+ijk′ =

mij∑
k=1

T+
ijkk′xijk, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (2g)

t−ijk′ =

mij∑
k=1

T−ijkk′xijk, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (2h)

t−ij(k′+1) ≥ t−ijk′ , ∀i ∈ I, j ∈ Ji, k 6= mij , (2i)

t+ij(k′+1) ≥ t+ijk′ , ∀i ∈ I, j ∈ Ji, k 6= mij , (2j)

t+ijk′ ≥ 0, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (2k)

t−ijk′ ≤ 0, ∀i ∈ I, j ∈ Ji, k′ ∈ K ′ij , (2l)
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b+ijk′ =

mij∑
k=1

T+
ijkk′pijk, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (2m)

b−ijk′ =

mij∑
k=1

T−ijkk′pijk, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (2n)

CPT-Value Constraint Set

π+
ijmij

= w+
(
b+ijmij

, γi
)
, ∀i ∈ I, j ∈ Ji, (2o)

π+
ijk′ = w+

( mij∑
l=k′

b+ijl, γi
)
− w+

( mij∑
l=k′+1

b+ijl, γi
)
, ∀i ∈ I, j ∈ Ji, k 6= mij , (2p)

π−ij,1 = w−
(
b−ij1, δi

)
, ∀i ∈ I, j ∈ Ji, (2q)

π−ij,k′ = w−
( k′∑
l=1

b−ijl, δi
)
− w−

( k′−1∑
l=1

b−ijl, δi
)
, ∀i ∈ I, j ∈ Ji, k′ 6= 1, (2r)

( mij∑
k′=1

π+
iqik′

V +(t+iqik′ , αi) + π−iqik′V
−(t−iqik′ , βi, λi)

)
−
( mij∑
k′=1

π+
ijk′V

+(t+ijk′ , αi) + π−ijk′V
−(tijk′ , βi, λi)

)
− sposij + snegij −∆ = 0,

∀i ∈ I, j ∈ Ji,

(2s)

Preferred Prospect Constraint Set

sposij ≤M(1−Ψij), ∀i ∈ I, j ∈ Ji, (2t)

snegij ≤MΨij , ∀i ∈ I, j ∈ Ji, (2u)

Msposij ≥ zqiij , ∀i ∈ I, j ∈ Ji, (2v)

(ni − 1)Φi ≤
∑
j 6=qi

zqiij , ∀i ∈ I, (2w)

Decision Variable Domain Constraint Set

a ∈ A, (2x)

Φi ∈ {0, 1}, ∀i ∈ I, (2y)

zqiij ,Ψij ∈ {0, 1}, ∀i ∈ I, j ∈ Ji, (2z)

sposij , snegij ≥ 0, ∀i ∈ I, j ∈ Ji, (2aa)

T+
ijkk′ , T

−
ijkk′ ∈ {0, 1}, ∀i ∈ I, j ∈ Ji, k ∈ Kij,, k

′ ∈ Kij , (2ab)

where ∀i ∈ I, j ∈ Ji, k′ ∈ Kij we have
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w+(b+ijk′ , γ) =
(b+ijk′)

γ(
(b+ijk′)

γ + (1− b+ijk′)γ
)γ−1 , (3a)

w−(b−ijk′ , δ) =
(b−ijk′)

δ(
(b−ijk′)

δ + (1− b−ijk′)δ
)δ−1 , (3b)

V +(t+ijk′ , αi) = (t+ijk′)
αi , (3c)

V −(t−ijk′ , βi, λi) = −λ(−t−ijk′)βi . (3d)

The objective function (2a) maximizes a function of the number of supporters

and the persuasion actions taken, where the specific form of the function depends

upon the context of the problem instance. The constraints can be grouped as follows:

the Parameter Update (Constraints (2b)–(2d)), Ordering (Constraints (2e)–(2n)),

CPT-Value (Constraints (2o)–(2s)), Preferred Prospect (Constraints (2t)–(2w)), and

Decision Variable Domain (Constraints (2x)–(2ab)) Constraint Sets. More formally,

Constraints (2b) and (2c) ensure that, for each member, for every event in their set of

prospects, the event’s value and associated probability are updated in accordance with

the persuasion action. Constraint (2d) updates each member’s probability distortion,

value curvature, loss aversion, and reference point values with respect to the same

persuasion action. This research assumes the independence of parameter updates

and that they are functions of only the persuasion action. The exact natures of these

functions are not known, as the possibility of such updates has only recently been

studied in the literature. Moreover, such parameter updates may be interrelated. For

example, the function to update the loss probability distortion parameter may depend

on the action and the previous gain probability distortion parameter. We will exclude

such a possibility for this study, assuming instead that the updated parameter values

are a function of only the current parameter value and the persuasion actions.

Constraints (2e) – (2n) create the mappings, T+
ijkk′ and T−ijkk′ , from the new gain
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and loss values, xijk, to their sorted, t+ijk and t−ijk, values. Constraints (2e) and

(2f) enforce a bijective mapping. Constraints (2g) and (2h) perform the mapping

of outcomes for each decisionmaker, and Constraints (2m) and (2n) do likewise for

probabilities. Constraints (2i) and (2j) ensure the values are in ascending order, and

Constraints (2k) and (2l) enforce the positivity and negativity of gains and losses,

respectively. The decision weights for gain and losses are calculated and enforced

via Constraints (2o) – (2r) utilizing the Kahneman probability weighting functions

specified in Equations (3a) and (3b). Constraint (2s) calculates the difference between

prospect j and the preferred prospect qi for each individual, utilizing the previously

described decision weights and the Kahneman value functions listed in Equations (3c)

and (3d). Constraints (2t) – (2v) ensure only one of the decision variables sposij or snegij

assumes the entirety of this value, depending on the sign of the difference. Note that

a value of zero for zqiij is always feasible but, if properly constructed, the relation of

the objective function to Constraint (2w) will induce a value of one whenever feasible.

Constraint (2w) ensures an individual can only be labeled a supporter if he prefers

prospect qi to all of the other ni − 1 prospects.

Persuasion actions are broadly defined in this formulation. They may be discrete

or continuous, depending on the context. Moreover, the space A of feasible actions is

assumed to be bounded. Likewise, the measure associated with the value of an out-

come is not explicitly defined in this formulation. CPT usually assumes the measure

is monetary in nature. Utilizing actuarial practices, monetary values can be applied

to many non-monetary outcomes; however, these measures may still be ill-suited to

describe some situations wherein persuasion is of interest. For example, in a presi-

dential election, the monetary effects of a choice have value, but so do a wide array of

other measures. Thus, it is probable that some situations may be better described by

adapting a multi-attribute measure in the vein of Value-Focused Thinking (Keeney
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and Keeney, 2009). Depending on the setting, these measures and their associated

weights may be specific to individuals, making their estimation challenging. In such

situations, the adaption of a discrete or continuous Likert Scale may be more ef-

fective. This course of action is promoted by Gass and Seiter (2015) who provided

self-reporting scales (e.g., Likert Scales or Semantic Differential Scales) as an option

to explicitly measure persuasion.

An interesting property of this formulation, in part driven by the restrictions

on the parameter update functions fijk, gijk, and hθi , is that there always exists a

feasible solution. Whenever no attempt at persuasion is made, the parameter update

functions are assumed to equal zero. Thus, the sorted outcomes t+ijk and t−ijk are

merely the (ŷijk − ri)-values, listed in ascending order and separated by sign (i.e.,

positivity or negativity). Under such a null action by the persuader, the objective

function value can be determined simply by calculating the prospect values for all

individuals, counting those individuals who strictly prefer prospect qi to all others,

and substituting those values into the specific form of the objective function.

Finally, many situations may not allow for all prospect theory parameters, raw

outcomes, and probabilities to be simultaneously affected. In such a scenario, the

appropriate decision variables can be affixed as parameters and the presented formu-

lation simplified. The malleability of outcomes such that rank-order is not preserved is

perhaps the most complicating feature of this scenario. If rank-order can be assumed

to be preserved, then the persuasion program can be greatly simplified.

Adaptations from Risk to Uncertainty.

To model an uncertain environment, we assume some probability-like measure is

utilized to quantify uncertainty. Such an assumption accords with the belief-based

model of decision under uncertainty by Fox and Tversky (1998) and is validated by the
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work of Gonzalez and Wu (1999) and Kilka and Weber (2001). These authors quan-

tified uncertainty using Support Theory developed by Tversky and Koehler (1994),

wherein judged probabilities are measured by the support of a focal hypothesis com-

pared to an alternative. That is,

P (A,B) =
s(A)

s(A) + s(B)
,

wherein the function s(·) is characterized as the degree of support for a given hypoth-

esis.

Under Support Theory, judged probabilities lose the property of extensionality.

The probability of a disjunction of two independent and mutually exclusive events can

no longer be assumed to be their sum because the implicit disjunction of a two events

is assumed to be perceived as less likely than their explicit disjunctions. Namely, if

hypothesis A is equal to the union of mutually exclusive hypotheses B and C, then

A is an implicit disjunction, whereas B ∪C is an explicit disjunction. In this setting,

the authors propose s(A) ≤ s(B ∪ C).

Therefore, to adapt our model to a belief-based approach using Support Theory,

we introduce the sets Cij and Ωu.

Cij : Set of all Ωu subsets of Kij such that {Ωu ∈ Kij : 1 ≤ |Ωu| ≤ mij}

The set Cij is a collection of subsets of Kij. Each of these subsets, Ωu, represents a

possible disjunction of the uncertain events in Kij. CPT utilizes the assessed likeli-

hood of these disjunctions to determine the decision weights. In the case of risk, these

disjunctions are merely the sum of the component probabilities. However, as the as-

sumption of extensionality fails to hold, the judged probability of each disjunction

must be obtained. As such, the decision variables p̂ijk and pijk from the risk model
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must be substituted with the following.

p̂ijΩu
: The judged probability that the disjunction of events in Ωu occurs

pijΩu : The judged probability that the disjunction of events in Ωu occurs

after persuasion

To account for uncertainty in lieu of risk within the general model, one may respec-

tively replace Constraints (2c) and (2m)–(2r) with Constraints (4a)– (4g) to leverage

these Support Theory based, disjunction-oriented probabilities.

pijΩu = p̂ijΩu + fijΩu(a), ∀i ∈ I, j ∈ Ji,Ωu ∈ Cij , (4a)

b+i,j,k′ =
∑

Ωu:|Ωu|=mij−k′+1

pijΩu

[ ∏
l∈Ωu

(
mij∑
l′=k′

T+
ijll′

)]
, ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (4b)

b−i,j,k′ =
∑

Ωu:|Ωu|=k′
pijΩu

∏
l∈Ωu

 k′∑
l′=1

T−ijll′

 , ∀i ∈ I, j ∈ Ji, k′ ∈ Kij , (4c)

π+
ijmij

= w+
(
b+ijmij

, γi
)
, ∀i ∈ I, j ∈ Ji, (4d)

π+
ijk′ = w+

(
b+ijk′ , γi

)
− w+

(
b+ij(k′+1), γi

)
, ∀i ∈ I, j ∈ Ji, k 6= mij , (4e)

π−ij,1 = w−
(
b−ij1, δi

)
, ∀i ∈ I, j ∈ Ji, (4f)

π−ij,k′ = w−
(
b−ijk′ , δi

)
− w−

(
b−ij(k′−1), δi

)
, ∀i ∈ I, j ∈ Ji, k′ 6= 1, (4g)

Constraint (4a) is a natural analog to Constraint (2c), except that a separate

persuasion update function is required for each event disjunction. The same applies

for Constraints (4d)–(4g). However, Constraints (4b) and (4c) are only required

when a persuasion action can disrupt the rank-order of outcomes; they ensure that

the proper disjunctions are assigned to the appropriate positions for calculation of the

decision weights by utilizing the decision variables associated with the order mapping.

Furthermore, if a measure of evidence strength can be ascertained for an uncertainty,

Constraint (4a) can be written in terms of the persuasion action’s effect on this metric.
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Tversky and Koehler (1994) and Fox (1999) demonstrated that judged probabil-

ities can be estimated by the direct assessment of strength of evidence. They show

that

P (A,Ac) =
s(A)

s(A) + s(Ac)
=

ŝ(A)k

ŝ(A)k + ŝ(Ac)k
=

ŝ(A)k

ŝ(A)k + wAc

[∑n
i=1 ŝ(Bi)

k
] (5)

wherein s(A) is the support of hypothesis A, ŝ(A) is an evidence strength metric for

A, events B1 to Bn form the explicit disjunction comprising the implicit disjunction

Ac, and the global weight wAc represents the ratio of support between these implicit

and explicit disjunctions.

In such a situation, once values of k and wAc have been identified via regression

analysis of data pertaining to observed behaviors and the effect of persuasion on

ŝ(A) ascertained, Constraint (4a) can be rewritten in a form similar to Equation

(5). Such a functional relationship is highly beneficial, especially when the evidence

strength metric is observable. In Section 2.4, we provide an example demonstrating

this concept.

2.4 Example Applications

The estimation of all parameter update functions in a GPP formulation under

either risk or uncertainty is feasible, but it is also expensive and dependent upon the

specific persuasive action. Previous data collection efforts in human subject research

are generally insufficient to simultaneously estimate all of these functional forms.

The dynamic nature of risk attitude is alluded to in the literature, but few studies

have translated these changes quantitatively into the complete CPT framework. In

this section, we demonstrate the efficacy of our proposed model to specific contextual

instances wherein a persuader can reasonably assume a subset of the decision variables
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to be constant. By doing so, we demonstrate the flexibility of the GPP and provide

motivation for estimating the dynamic effects of persuasion on CPT parameters via

future human subject research.

The first application demonstrates the model under risk and considers groups of

decisionmakers at an aggregate level. The persuader is able to alter the respective

outcomes, probabilities, and reference points of two groups of decisionmakers. The

probability weighting and utility functions are assumed to be constant. The remain-

ing examples demonstrate the model’s efficacy under uncertainty, with one modeling

decisionmakers at an individual level and the other at the aggregate level. In the

second of the three models, the persuader is able to affect judged probabilities for a

set of individuals by strengthening or weakening the support for a hypothesis. Like-

wise, the uncertainty weighting function can be altered through either an emotional

appeal or by affecting source preference. The third model assumes only the prospects

faced by demographic groups can be affected and the remaining elements are con-

stant. All instances are solved utilizing the global solver BARON on an HP ZBook

equipped with a 2.70 GHz Intel i7-4800MQ processor and 32GB of RAM. Our selec-

tion of a commercial solver is informed by the results of Caballero et al. (2018) on a

similar mathematical program having sorting constraints coupled with functions that

use decision variables in both the base and exponent of an expression. For further

information regarding BARON, we refer the interested reader to selected research

conducted to develop and improve the solver’s algorithms, as conducted by Ryoo

and Sahinidis (1995, 1996); Tawarmalani and Sahinidis (2004, 2005); Khajavirad and

Sahinidis (2013); Sahinidis (2018); and The Optimization Firm (2019).

37



www.manaraa.com

Influence under Risk: Insurance Policies.

Insurance is a popular application area for Cumulative Prospect Theory. In an

extensive review of its descriptive capability, Camerer (2000) discussed how prospect

theory explains phenomena with respect to automobile, health, and telephone wire

insurance. Given this interest in the literature, our first application of the GPP relates

to a home insurance company designing policies to maximize their expected profit.

For this use case, we make the following assumptions. The insurance provider

is developing a business model with “no hassle” policies. All homes of a given type

are provided a ready-made plan with set premiums and deductibles. Two aggregate

groups of homeowners of home types i ∈ I = {1, 2} each have two lotteries j ∈

J = {Buy Policy, Opt Out} = {1, 2} from which to chose. It is assumed that any

one of four events can occur to a home, where Kij = {Fire,Hail,Wind,Nothing} =

{1, 2, 3, 4} for every homeowner group and prospect. Only one event is able to occur

in a given payment period. A decision tree for homeowner group i based on the

insurer’s decision variables can be seen in Figure 3. Of note, we assume ŷi1k = 0 and

p̂i1k = p̂i2k = p̂ik, ∀ i ∈ I, k ∈ K1i, where p̂ik is defined for notational convenience for

this use case only.

Figure 3. Customer Decision Tree for Purchasing Insurance Policy
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This example is designed to illustrate our model’s applicability towards risk.

Therefore, in the vein of an actuarial example, we make the assumption that fre-

quentest probabilities and associated monetary damages of an insurable event are

known (or can be reasonably estimated) and are utilized to inform both customer

and insurer decisions. The probability of any given event is assumed to be disparate

for each home type. The insurance provider is assumed to use aggregate data in set-

ting prices. As such, the original probability weighting function proposed by Tversky

and Kahneman (1992) is adopted, in addition to their proposed (power) utility func-

tion and the parameters associated with these functions (e.g., loss aversion parameter,

utility curvature, etc.).

Coinciding with the emergence of separate wind/hail deductibles in the U.S. mar-

ket, the insurer’s policies incorporate both fixed rate premiums (ai) and event-based

deductibles (aik). In addition to setting the premium and deductible amount for

each policy, the insurance provider faces two additional decisions: (1) whether to

require all policy holders to upgrade their roof to a cutting-edge material costing κi

that affects the hazard probability by ωik; and (2) whether to implement a contro-

versial advertising campaign of cost σ = $500 to emphasize household hazards that

could either impel insurance purchase or harden resolve against it, depending on the

decisionmaker. These binary decisions are respectively represented as aup and aad.

Additionally, a binary variable νik is introduced to determine whether the damage

incurred exceeds the deductible.

The formulation of this instance utilizes the majority of the constraints in the

proposed GPP under risk. However, there do exist a few modifications, as the pa-

rameters within both the probability weighting function and utility functions are

assumed to be constant. The insurance provider operates via Expected Utility as a

risk neutral decisionmaker and optimizes its profit using the following mathematical
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program, assuming customers purchase insurance in accordance to CPT. We note

that the “Opt Out” prospect preserves rank order, and the base probabilities are not

affected. Therefore, we need only consider the case where j = 1 for many constraints.

max − σaad +
∑
i∈I

Φi
( ∑
k∈Ki1

νikpi1k(−ŷi2k + aik + ai)
)

(6a)

subject to Constraints (2e)–(2v),(2y)–(2ab),

νikaik ≤ ŷi2k, ∀i ∈ I, k ∈ Ki1, (6b)

aik ≥ (1− νik)ŷi2k, ∀i ∈ I, k ∈ Ki1, (6c)

xi1k = ai + aik + κiaup − ri, ∀i ∈ I, k ∈ Ki1, (6d)

xi2k = ŷi2k − ri, ∀i ∈ I, k ∈ Ki2, (6e)

pi1k = ai + ωikaup, ∀i ∈ I, k ∈ Ki1, (6f)

ri = r̂i + ρiaad, ∀i ∈ I, (6g)

Φi = z1
i2, ∀i ∈ I, (6h)

νik ∈ {0, 1}, ∀i ∈ I, k ∈ Ki1, (6i)

0 ≤ a1k ≤ 5, 000, ∀ k ∈ K11, (6j)

0 ≤ a2k ≤ 10, 000, ∀ k ∈ K21, (6k)

0 ≤ a1 ≤ 2, 000, (6l)

0 ≤ a2 ≤ 4, 000. (6m)

Table 1 presents the correspondence of constraints between this particular for-

mulation and the general GPP formulation set forth in Section 2.3. The objective

function (6a) calculates the total expected profit obtained by the insurer, deducting

expected expenditures from expected revenue. Constraints (6b) and (6c) determine

whether damage exceeds the set event-based deductible, whereas Constraints (6f)–

(6g) update the outcome values, probabilities, and reference points specific to this

context. Likewise, in this setting there is only one alternative prospect, implying Φi

can be determined directly via Constraint (6h). Although the formulation can be fur-
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ther simplified for this instance by replacing Φi with z1
i2 throughout the formulation

and eliminating Constraint (4i), we refrain from doing so to maintain consistency of

terminology.

Table 1. Correspondence of Instance-specific and GPP constraints

Instance GPP Remarks
(6a) (2a)
(2e)-(2v), (2y)-(2ab) As presented
(6b), (6c), (6i) N/A These constraints are used to compute the

instance-specific objective function
(6d)-(6g) (2b)-(2d)
(6h) (2w) The GPP constraint (2w) can be simplified

because there are only two prospects
(6j) - (6m) (2x)

The values for all parameters for each homeowner group are presented in Table

2. Each homeowner may have disparate reference points pertaining to the amount

they expect to pay for home repairs. Thus, we see homeowners of Type 1 have a

reference point of −$1, 000 , whereas homeowners of Type 2 have a reference point

of $0. The cost of upgrading a roof (κi) must be born by the policy holder and will

reduce the hazard of some insurable events but may increase it for others. Specifically,

we assume the upgraded roof is more resilient to wind and hail but more susceptible

to fire damage, as it is made of a more flammable material. As such, we provide the

corresponding pik and ωik-values in Table 2. Likewise, the advertising campaign is

anticipated to affect the reference point for customers, as represented by the values

of ρi. Ceilings of $2,000 and $5,000 are respectively imposed on the premium and

deductible amounts for Home Type 1, and ceilings of $4,000 and $10,000 are imposed

for these values on Home Type 2. These limits are applied to ensure the plans remain

economically feasible for the socio-economic condition of the region and bound both

ai and aik from above. It is possible for such constraints to make it unprofitable to

offer insurance to a specified home type. In this situation, additional modifications

would be required to the GPP. However, this example has been constructed such that
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the insurer can profit by offering insurance within the socio-economic limits. Finally,

a discriminable factor of ∆ = 5 is adopted for ascertaining whether a homeowner

prefers to buy the policy.

Table 2. Parameter Values Associated with Insurance Persuasion Program

Parameter Home Type 1 Home Type 2
Value $100,000 $200,000
Reference Point (r̂i) -$1,000 $0
Fire Probability (pi1) 0.005 0.001
Hail Probability (pi2) 0.02 0.03
Wind Probability (pi3) 0.01 0.01
Fire Damage (ŷi21) -$70,000 -$160,000
Hail Damage (ŷi22) -$20,000 -$30,000
Wind Damage (ŷi23) -$11,000 -$18,000
Upgrade Fire Probability Effect (ωi1) 0.001 0.001
Upgrade Hail Probability Effect (ωi2) -0.015 -0.01
Upgrade Wind Probability Effect (ωi3) -0.0075 -0.005
Advertising Reference Point Effect (ρi) $500 -$2,000
Upgrade Homeowner Cost (κi) -$2,000 -$4,000

The commercial solver BARON was alloted five hours of computational effort to

identify a global optimal solution. The time limit was reached prior to convergence,

but the reported maximum amount the insurer can earn per period for a set of these

two home types is $3,095.26. Therefore, optimality of this solution is not guaranteed.

However, it does provide the insurer with a lower bound on the expected profit that

can be attained. This level of profit is obtained by foregoing the advertisement but

instituting the mandatory roof upgrade policy. The deductibles for the $100,000 home

are listed as {$4,915.52; $4,999.50; $4,919.150} and for the $200,000 home as {$0.67;

$0.70; $0.53}, and their respective premiums are $1,999.93 and $2,586.00.

In this solution, owners of both home types prefer to buy their offered policy.

However, the policies exhibit different behavior with regard to their deductibles; Home

Type 1 is required to pay substantial deductibles, whereas Home Type 2 has virtually

no deductible for any event. This behavior is due to the socio-economic constraints

placed on these values, in addition to the relation of the premium and the deductible

to the profit function. Positive profit is only obtained by increasing the premium,
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whereas an increase in the deductible merely curtails an expenditure. As such, if

able to do so, the insurer prefers all payment in the form of the premium and only

resorts to increasing the deductible values when the premium is near the homeowner’s

socio-economic limit. This behavior is appropriate for our simplified model because

we ignore moral hazards and extraneous claims, two commonly cited reasons for

implementing a deductible. Were these considerations desired to be modeled, an

alternative lower bound on the deductibles could be instituted, but doing so would

likely lessen the expected profit through an associated premium reduction.

Influence under Uncertainty with Evidence Strength Metric: Defending

a Client.

A defense attorney’s goal is to convince a jury of their client’s innocence. The

jurors, for their part, are asked to listen to both the prosecution’s and the defense’s

arguments to determine whether the accused is guilty beyond a reasonable doubt.

Diamond (2003) defended the jury as a decisionmaker in response to criticism of the

U.S. Constitution’s Seventh Amendment and concluded that juries are competent,

albeit imperfect decisionmakers due to their human nature. In this example, we show

how an attorney can use the tools of decision under uncertainty to leverage the human

nature of the jury to their benefit.

In this context, each juror’s decision can be viewed as a decision under uncertainty,

as depicted in Figure 4. Jurors are not provided with the probabilities of guilt but

must infer them through the arguments presented in court. A verdict of guilty is

preferred if a juror assesses the probability of guilt to exceed a threshold of reasonable

doubt. This threshold of reasonable doubt is determined by the utilities associated

with either a correct or an incorrect verdict.

Consider a defense attorney in a criminal trial trying to achieve an acquittal for
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Figure 4. Juror Decision Tree: Two Available Verdicts

his client (i.e., not a hung jury or a mistrial). Two of the twelve jurors are perceived

through voir dire to be of such strong personality, it is determined that, if they can be

convinced of acquittal, the rest of the jury will follow. We assume the prosecution has

just rested their case, and the defense attorney is deciding how to respond. Utilizing

the 0–100 suspicion scale from Tversky and Koehler (1994), the defense attorney

estimates the prosecution was very effective and that each of the two jurors of interest

views his client as a 95 (i.e., most likely guilty). However, through cross examination,

the defense attorney was able to cast suspicion on three other individuals such that

their respective values on the suspicion scale are 25, 20, and 15. Even though the

three other individuals are not on trial, if a juror has high suspicion values for the

group compared to the person on trial, then reasonable doubt will exist. We define

event A as the defendant having committed the crime (i.e., defendant is guilty) and

events B, C, and D as one of the three individuals referenced by the defense having

committed the crime (i.e., the defendant is not guilty).

In this setting, it can be observed that I = {Juror 1, Juror 2} = {1, 2}, Ji =

{Rule Guilty, Rule Not Guilty} = {1, 2} ∀i, and Kij = {Guilty, Innocent} = {1, 2}

∀i ∈ I, j ∈ J . Should we assume the example estimates from Fox (1999) of k = 2.2

and wAc = 0.65 to be applicable and static, the judged probability that juror i assigns
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to the defendant of being guilty (i.e., p̂i11 = P (A,Ac) = p̂i21) can be calculated

via Equation (7). We further note that the support assigned to the defendant not

committing the crime is assumed to equal the weighted support that one of the other

individuals did. However, it is assumed the jurors do not unpack Ac on their own

(i.e., with additional hypotheses regarding who, specifically, might be guilty, if not

A); their task is to consider the collective set of alternatives, Ac = B ∪ C ∪D. Due

to binary complementarity, it can also be observed that both p̂i12 and p̂i22 are equal

to Pi(A
c, A) = 1− p̂i11 = 1− p̂i21.

p̂ij1 =
ŝi(A)k

ŝi(A)k + wAc [ŝi(B)k + ŝi(C)k + ŝi(D)k]
(7)

A common reference point of zero is assumed for all jurors along with a ∆-

parameter of zero. Jurors are further assumed to have Linear-in-Log-Odds probability

weighting functions with parameter values corresponding to experiments conducted

by Kilka and Weber (2001), which are identical for gains and losses such that, for

each juror i, we have δ̂i = {1.096, 0.953} and γ̂ = {0.489, 0.415}. The general form of

the Linear-in-Log-Odds function is stated in Equation (8).

w+(p) = w−(p) =
δ+pγ

+

δ+pγ+ + (1− p)γ+ . (8)

We assume these estimates correspond with familiar and unfamiliar sources of uncer-

tainty from the Kilka and Weber (2001) experiments. As such, we assume Juror 1 is

familiar with the underlying uncertainty whereas Juror 2 is not. The reference point

adjusted utility for a given outcome is assumed to be fixed such that a correct ver-

dict yields u(G,G) = 1 = u(NG, I), an incorrect guilty verdict yields u(G, I) = −5,

and an incorrect not guilty verdict yields u(NG,G) = −4. Therefore, the persuasion
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action preserves rank order of outcomes.

The prosecutor has seven themes to utilize in crafting a defense argument, and

any combination of these themes may be employed. A binary decision variable al is

associated with each of the seven themes, each of which has the potential to increase

or decrease the suspicion for a given individual, with the specific effect dependent

upon the juror. For instance, one potential theme may be to insinuate that a corrupt

government official is the real culprit. From jury selection, the defense attorney may

know that one juror has experienced mistreatment from authority figures and may

identify personally with such an argument. However, if the second juror is a lifetime

civil servant, such a theme may not resonate with them. Support for some hypothesis

E ∈ {A,B,C,D} after persuasion is denoted as s̄i(E).

We also assume the themes utilized can affect the probability weighting function

of either of the two jurors. This effect may result from a theme’s emotional content or

the jurors’ respective familiarity with the source of uncertainty. For example, if the

underlying suspicion of the defendant is rooted in ethical finance practices, a selected

theme may include educational aspects relating to the nuances of this profession.

Should one juror be unfamiliar with these nuances, this theme may help reduce the

adverse source preference effect. For this illustrative example, the quantitative impact

of each theme against each hypothesis and juror’s probability weighting function is

shown in Table 3, wherein τiEl represents the effect of Theme l on the support for

hypothesis E for juror i.

To model these effects, new binary decision variables al must be introduced, which

equal one if Theme l is utilized and zero otherwise. The GPP under uncertainty can

be updated as follows. The objective function (9a) assumes the defense attorney

seeks to select a combination of themes to maximize the number of jurors favoring

a Not Guilty verdict prior to deliberation. The support update function for each
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Table 3. Parameter Update Coefficients Associated with Defense Themes

Theme(l)
Effect 1 2 3 4 5 6 7
γ1 0 0 -0.088 0 -0.015 0 -0.05
δ1 0 0 -0.1 0 -0.025 0 -0.05
τ1Al -10 -5 5 -5 -5 -15 0
τ1Bl 10 -5 10 -5 5 -10 5
τ1Cl 0 10 -10 20 -10 30 0
τ1Dl 0 10 -10 20 -10 30 0
γ2 0.08 0.04 -0.15 0 0 -0.01 0
δ2 0.1 0.05 -0.002 0 0 -0.01 0
τ2Al -5 10 -5 -5 -5 -15 0
τ2Bl 10 5 -10 5 5 -10 5
τ2Cl 0 5 -5 10 -15 50 0
τ2Dl 10 0 0 0 -5 -5 10

hypothesis can be seen in Equation (9b), and the probability update functions are of

the form shown in Equations (9c) and (9d). Based on the context of our problem,

there are only two outcomes for each prospect: one outcome represents a gain and

the other outcome represents a loss. As rank order is preserved, the Prospect Order

Constraint Set is not required and, when coding the instance, we can take the b±ijk-

and t±ijk-variables as their appropriate pijk- and xijk-counterparts (e.g., p111 = b+
112 and

p121 = b−121). Binary complementarity also ensures the sum of judged probabilities

equals one, in accordance with Constraint (9d). For reference, Table 4 presents the

correspondence of constraints between the particular and general formulations for this

instance of the GPP.

max
∑
i∈I

Φi (9a)

subject to Constraints (4d)–(4g), (2s)–(2aa),

s̄i(E) = ŝi(E) +

7∑
l=1

τiElal, ∀i ∈ I, E ∈ {A,B,C,D}, (9b)

pij1 =
s̄i(A)k

s̄i(A)k + wAc [s̄i(B)k + s̄i(C)k + s̄i(D)k]
, ∀i ∈ I, j ∈ Ji, (9c)

pij2 = 1− pij1, ∀i ∈ I, j ∈ Ji. (9d)
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Solving the adapted persuasion program in BARON, an optimal solution is at-

tained in 0.08 seconds of computational effort. The defense attorney is able to per-

suade both jurors of his client’s innocence by utilizing the Themes 1, 2, 4, 5, and 6.

The respective difference in prospect values is 1.37 and 0.026 in favor of acquittal for

Jurors 1 and 2.

Table 4. Correspondence of Instance-specific and GPP constraints

Instance GPP Remarks
(9a) (2a)
(4d)-(4g), (2s)-(2aa) As presented
(9b) N/A Instance-specific constraint used to relate the

evidence strength metric to the judged prob-
ability value

(9c)-(9d) (4a)

However, we note that there are alternative optimal solutions in this setting.

For instance, if the previously reported optimal is disallowed via a new constraint,

BARON reports the combination of Themes 4, 6, and 7 as an optimal solution having

the same objective function value. Using this combination of themes, the respective

difference between acquittal and conviction is 0.187 and 0.29 for Jurors 1 and 2. To

distinguish between alternative optimal solutions, additional manpower, budgetary,

or strategic considerations can be included via a subset of new constraints. For exam-

ple, the number of themes to be utilized may be limited by the number of paralegals

available for research. In turn, the number of paralegals may be affected by the law

firm’s budget and total caseload. The inclusion of this dynamic in the constraints en-

ables the attorney to select an optimal defense strategy while considering concomitant

factors.
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Influence under Uncertainty without Evidence Strength Metric: Pen-

sion Enrollment.

In our final example, we consider a public agency reconstructing its pension pro-

gram for government employees (e.g., see Herald, 2016). The public agency has been

operating a legacy, pension-only system that is no longer affordable. The legacy pen-

sion system guarantees an annual pension of 50% of salary at retirement (µold) to

employees who stayed with the company for 25 years. Income during employment

with the company is based on a time-of-employment stair schedule and is readily pre-

dictable. Alternatively, the new mixed pension system reduces the annuity percentage

to 40% of the salary at retirement (µnew), but it includes an additional retirement

benefit based on employee contributions to a stock market fund over their duration

of employment. We assume that, if the stock market has increased in a given year, an

additional τ is provided to the retiree whereas, if the market has declined, a smaller

value of ρ is provided. All new hires will be switched to the new, mixed-pension

system, but the agency wishes to reduce future payroll costs by incentivizing cur-

rent employees to switch to the new retirement plan. Assuming a choice is made

contingent upon expected annual retirement income, the decision tree faced by these

employees can be seen in Figure 5. All outcome components of the decision tree are

fixed except for the continuous variable a. For this scenario, the variable a represents

the amount (in dollars) of an additional incentive called continuation pay which will

be provided to any employee for switching to the new retirement system. However,

this continuation pay can only be retained if the member choses to remain employed

with the agency until retirement.

To avoid complications with the time value of money, we assume all values have

been adjusted to current year dollars. The agency is considering four demographics

it would like to impel to switch into the new pension system. Each demographic has
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Figure 5. Pension Enrollment Decision Tree

varying values of µold, µnew, τ , and ρ parameters based on their projected income

at retirement, as reported in Table 5. Each demographic is assumed to utilize the

Cumulative Prospect Theory functions and parameters from Tversky and Kahneman

(1992), with a reference point of zero. The parameter values for these CPT functions

are not malleable.

The public agency is only able to affect the outcomes depending on the value of a.

As such, the rank order of outcomes in this setting is not permutable. We recognize

that the assumption of a reference point equal to zero may be subject to alternative

views; one could argue that an individual’s reference is their expected retirement

income. However, we justify herein the reference point of zero for both tractability

and demonstration purposes.

A compressed version of the decision tree for use in our persuasion program is

illustrated in Figure 6. As rank order is preserved, we assume the public agency has

polled its employees over the appropriate event disjunctions utilized in the probability

weighting functions. In this way, the agency directly assesses the judged probability

of its constituents for each event and utilizes them in the appropriate position to

calculate the decision weights. These values are also listed in Table 5. It is assumed
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Table 5. Parameter Update Coefficients Associated with Pension Persuasion

Parameters Demographic 1 Demographic 2 Demographic 3 Demographic 4
µold $20,000 $30,000 $40,000 $50,000
µnew $16,000 $24,000 $32,000 $40,000
τ $3,000 $4,500 $6,000 $7,500
ρ $400 $600 $800 $1,000
p̂i11 0.35 0.1 0.3 0.4
p̂i12 0.2 0..2 0.25 0.55
p̂i13 0.3 0.3 0.3 0.05
p̂i14 0.25 0.5 0.25 0.075
p̂i1(1,2) 0.5 0.2 0.45 0.85
p̂i1(1,2,3) 0.8 0.6 0.75 0.95
p̂i21 0.6 0.3 0.5 0.9
p̂i22 0.4 0.7 0.5 0.1

that the event space associated with the uncertainty of each prospect cannot be

further subdivided. As such p̂i1(1,2,3,4) = p̂i2(1,2) = 1, ∀ i ∈ I, per Support Theory

axioms.

Figure 6. Compressed Pension Enrollment Decision Tree

The following adaption of the GPP under uncertainty allows the agency to de-

termine the minimum continuation pay it must provide to convince all demographics

to switch to the new retirement system. Table 6 presents the correspondence of con-

straints between the particular and general formulations for this instance. As with

the example presented in Section 2.4, note that the assumptions in this instance al-

low for the exclusion of selected GPP constraints. The outcome update functions

determining xijk-values correspond to the events depicted in Figure 5. It is assumed
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that, for each dollar a increases, each probability associated with the new retirement

system is positively incremented by, e.g., a value of 2.5× 10−6. Each ŷijk equals the

fixed elements of the associated outcome value (e.g., ŷi11 = µnew + τ).

min a (10a)

subject to Constraints (4d) – (4g) , (2s)–(2aa),

xi1k = ŷijk + a, ∀i ∈ I, k ∈ {1, 2}, (10b)

xi1k = ŷijk, ∀i ∈ I, k ∈ {3, 4}, (10c)

xi2k = ŷijk, ∀i ∈ I, k ∈ Ki2, (10d)

pi1Ωu
= p̂i1Ωu

+ a ∗ (2.5× 10−6), ∀i ∈ I,Ωu ∈ Ci1, (10e)

pi2Ωu
= p̂i2Ωu

, ∀i ∈ I,Ωu ∈ Ci2, (10f)∑
i∈I

Φi = 4. (10g)

Utilizing this information and a value of ∆ = 0, the resulting persuasion program

is solved optimally with 0.69 seconds of computational effort by the commercial solver

BARON. A minimum continuation pay of $5,950 is required to impel the targeted

demographics to switch pension programs. Each demographic favors switching to the

new pension system by a margin of $525.53, $515.83, $615.80, $0.20, respectively, in

CPT-calculated value.

Table 6. Correspondence of Instance-specific and GPP constraints

Instance GPP Remarks
(10a) (2a)
(4d)-(4g), (2s)-(2aa) As presented
(10b)-(10f) (2b)-(2c)
(10g) N/A Instance-specific constraint ensuring all deci-

sionmakers are persuaded

Since Demographic 4 finds the two deals very similar, the agency may need to

consider resolving with a higher ∆-value if it wants to ensure all demographics switch

to the new system. Assuming the agency has determined the scaled continuation

52



www.manaraa.com

pay cannot exceed $7,000 without reversing the cost savings of the mixed pension

system, the program is resolved with ∆ = 200. The optimal solution indicates all

demographics will enroll in the mixed pension system with a minimum continuation

pay of $6,924 with margins similar to those aforementioned. This solution provides

more assurance on employee behavior, but may reduce agency cost savings. Thus,

in making its final decision on the continuation pay value, agency leadership must

balance this risk versus reward dynamic, potentially by utilizing traditional Decision

Analysis techniques.

2.5 Discussion and Conclusions

The concept of influencing an individual to adopt a preferred course of action is an

ancient concept. The Ancient Greeks even personified persuasion in the goddess Pei-

tho (Theoi Project, 2017). It is also nearly ubiquitous. Commercial marketing cam-

paigns are persuasion operations wherein the desired prospect is a customer buying a

given product. Political campaigns are persuasion operations seeking to garner votes

for a particular candidate. Financial regulatory actions are persuasion operations

engaging corporations and individuals, both of which are susceptible to emotional

stimuli (Fairchild, 2014), with the objective of ensuring market confidence, finan-

cial stability, and consumer protection (Financial Services Authority, 2018). Addi-

tional application areas include management, deterrence, lobbying legislative bodies,

counter-terrorism, social marketing, and many other forms of interpersonal commu-

nication.

A new class of decision problems has been introduced to model this human be-

havior. We formulated a model rooted in fundamental behavioral economic concepts

such that a persuader can select an optimal strategy to meet a desired goal, subject

to selected restrictions. By doing so, we fill a gap in the Behavioral Operations Re-
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search literature by expanding the stream of research Franco and Hämäläinen (2016)

described as “[modeling] human behavior in complex settings” from a descriptive to

a prescriptive setting, and thereby strengthen the research stream’s connection to

the core of Operations Research study. Likewise, a similar observation can be made

when considering our work from the broader perspective of behavioral science; that

is, it leverages descriptive theories of choice to inform an agent’s optimal interac-

tion with a population. The models introduced in this research are unique in their

ability to address a variety of forms of persuasion under conditions of either risk or

uncertainty. It compliments psychological persuasion models (e.g., the Elaboration

Likelihood Method) that focus on how a persuasive message is processed by examining

how a persuasion campaign can be designed to achieve desired effects.

However, our models are limited by the lack of knowledge surrounding the func-

tional mappings of persuasion actions to their effect on Cumulative Prospect Theory

functional parameters and reference points. Future empirical studies in Behavioral

Operations Research and other, related disciplines are ultimately required to enable

the full potential of these models. Of particular interest are psychophysiological

studies (e.g., Leppänen et al., 2018) that capture the effect of emotion. Given the

potential effects of culture, background, age, and other factors to affect emotional

responses to persuasive stimuli, such experiments may requisite a significant number

of control variables and prove to be challenging-but-fruitful research endeavors. In

the absence of such data to inform regression of the parameter update functions, the

models set forth herein provide a framework to adopt for influence campaigns but

would necessarily utilize less quantitative estimation methods. Alternatively, prac-

tical implementation under current conditions could be facilitated by other robust

decisionmaking methodologies (e.g., Lempert et al., 2006).

Nonetheless, some of the first advances have already been shared in the litera-
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ture to develop these functional mappings with a view towards broader application.

Booij et al. (2010) provided a description of the risk attitudes of a variety of demo-

graphics in the Netherlands by characterizing the expected value of their Cumulative

Prospect Theory parameters. The respective characterization of external action on

the probability weighting function parameters by Campos-Vazquez and Cuilty (2014)

and Schulreich et al. (2014) provided the first empirical estimates of a probability

weighting update function. Future studies combining these methodologies can be

utilized to generate the data required to fit the parameter update functions related

to a specific persuasion action.

Other compelling areas for future research relate to the study of heuristic methods

applied to the GPP, and to the automated discovery of parametric input values. As

illustrated in Section 2.4, instances of our model can be constructed such that they are

difficult to solve quickly to optimality, even with a global solver. It is a worthy research

endeavor to explore under what conditions this behavior emerges and to develop

methods for its mitigation. The use of such methods or, alternatively, the heuristic

use of a global solver via the imposition of a time limit, are both promising strategies

to approach large persuasion problems in practice. Moreover, in a manner analogous

to that discussed by White et al. (2016), it may be possible to leverage big data

and/or sentiment analysis to describe changes in judged probabilities. Social media

provides a platform to either solicit or infer an individual’s evaluation of strength for

a given hypothesis and, if defined properly, their assessment of probability. If such

research is successful, the persuasion programs modeled herein have the potential to

shift the paradigm of strategic decisions regarding influence.
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III. Informing National Security Policy by Modeling
Adversarial Inducement and its Governance

Abstract

The distinction between peace and conflict in contemporary international rela-

tions is no longer well-defined. Leveraging modern technology, hostile action below

the threshold of war has become increasingly effective. The objective of such aggres-

sion is often the influence of opinions, emotions, and, ultimately, the decisions of a

nation’s citizenry. This work presents two new game theoretic frameworks, denoted

as prospect games and regulated prospect games, to inform defensive policy against

these threats. These frameworks respectively model (a) the interactions of competing

entities influencing a populace and (b) the preemptive actions of a regulating agent to

alter such a framework. Prospect games and regulated prospect games are designed

to be adaptable, depending on the assumed nature of persuaders’ interactions and

their rationality. The contributions herein are a modeling framework for compet-

itive influence operations under a common set of assumptions, model variants that

respectively correspond to scenario-specific modifications of selected assumptions, the

illustration of practical solution methods for the suite of models, and a demonstra-

tion on a representative scenario with the ultimate goal of providing a quantifiable,

tractable, and rigorous framework upon which national policies defending against

competitive influence can be identified.

3.1 Introduction

The role of a nation’s citizenry in models of interstate conflict is often captured

via the concept of audience costs. Introduced by Fearon (1994), audience costs char-

acterize the punishment levied by the population of a state upon its leader for backing
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down in a crisis escalation situation. This concept has been extended and tested by

numerous authors and is well-studied in the literature (e.g., Weeks, 2008; Moon and

Souva, 2016; Chiozza, 2017; Tomz et al., 2018). However, this research thread tends to

focus on the military instrument of national power and implies a binary relationship

between war and peace.

Conversely, the United States Joint Chiefs of Staff (U.S. Joint Chiefs of Staff,

2018) underscore that multiple instruments of national power (e.g., diplomatic, in-

formational, military, economic) can be coordinated and applied to achieve strategic

objectives. Chinese and Russian strategists place similar emphasis on coordinating

instruments of national power in their respective doctrines of Unrestricted Warfare

and New Generation Warfare.

Moreover, “[conventional] Western concepts of war are incompatible and funda-

mentally misaligned with the realities of conflict in the twenty-first century” (Stowell,

2018). Empowered by modern technology, emerging national defense strategies, of-

ten described by the term hybrid warfare, frequently utilize tactics stopping short of

conventional war. The result is what NATO Secretary General Jens Stoltenberg clas-

sified as a “new and more demanding security environment where also there is a more

blurred line between peace and war” (Woody, 2018b). This perspective is further

elucidated in the 2018 U.S. National Defense Strategy (U.S. Department of Defense,

2018) wherein interstate strategic competition of a multipolar, multi-domain, and

ambiguous nature is described as the primary concern to U.S. national security.

In such strategic competition, a nation’s citizenry may be explicitly targeted,

potentially by multiple instruments of power, often with the objective of influencing

their support for (or against) some prospect. This type of targeting can be witnessed

in recent Russian influence efforts in Ukraine (Stowell, 2018), the United States (DHS

and FBI, 2016), and the Balkans (Krastev, 2019). Moreover, as witnessed by the
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actions of China and North Korea in the 2016 American presidential election, multiple

adversaries may compete simultaneously over the public’s support (Silverstein, 2017;

Dupuy, 2018).

As such, in 21st Century interstate competition, the role of a nation’s citizenry

transcends the traditional concept of audience costs. In fact, as the decision-making

of a nation’s citizenry may be the object of competition, it is necessary to model their

framework for choices with high granularity.

From an offensive influence perspective, the persuasion programs set forth by

Caballero et al. (2018) can be leveraged to generate optimal strategies in a leader-

followers game. Within a persuasion program, an external entity known as the per-

suader acts to impel a certain decision (or certain respective decisions, in the case of

persuading a group of decisionmakers) by affecting (1) the underlying risk or uncer-

tainty, (2) subjective beliefs regarding payoffs, or (3) cognitive evaluation of the set

of prospects. Conceptually, their framework can be viewed as an adversarial Decision

Analysis problem wherein the persuader can affect the structure of an individual’s

decision tree (e.g., see Figure 7), and the Cumulative Prospect Theory (CPT) pa-

rameters utilized in its evaluation (Tversky and Kahneman, 1992). In this manner,

the persuader and the decisionmakers adopt the roles of the leader and the followers,

respectively, in a bilevel programming context. However, the assumption of bound-

edly rational followers via the use of CPT allows for the problem’s reformulation to

a single-level form.

The research herein extends their methodology to a defensive setting wherein a

third party, henceforth referred to as a regulator, is responsible for ensuring the actions

of multiple persuaders fall within certain confines of acceptable behavior. We do so

by introducing prospect games and regulated prospect games. A prospect game can be

viewed as a persuasion program having multiple competing persuaders such that each
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Figure 7. Example Decision Tree

has a finite number of available actions, whereas a regulated prospect game considers

how a regulator would optimally interact with the persuaders in this setting. That is,

a regulated prospect game is a prospect game acted upon first by a rational external

entity (i.e., one who abides by Expected Utility axioms).

To inform the regulator’s decision on whether to intervene, the prospect game

should first be solved to identify outcomes in the absence of regulator action. Given

that a consensus on which game theoretic solution concept should be leveraged for a

given situation can be elusive, we recommend the consideration of alternative frame-

works to ascertain whether identified outcomes are robust to the choice of a solution

concept. Should analysis of the prospect game indicate that the predicted persuader

behavior is unacceptable, a similar set of regulated prospect games should be solved

to provide a collection of intervention options. Such a methodology is illustrated in

Section 3.4.

Depending on the nature of influence and regulation, both of the games described

herein may involve some form of communication. As such, they are related to signal-

ing (Shoham and Leyton-Brown, 2008), cheap talk (Crawford and Sobel, 1982), per-

suasion (Milgrom, 1981), and Bayesian persuasion games (Kamenica and Gentzkow,

2011). However, prospect games and regulated prospect games are unique in their

utilization of a behavioral theory of choice (i.e., CPT) to describe lower-level deci-

sionmakers’ behaviors. More formally, since many communication games adopt a
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leader-follower framework, they can be modeled and solved as bilevel programs. A

prospect game has a similar structure albeit with multiple leaders, and its agent-based

modeling approach, enabled by CPT, allows for it to be modeled as a standard, single-

level, optimization problem, and solved as a normal form game. This incorporation of

CPT allows for a similar transformation in regulated prospect games, from a trilevel

to a bilevel math programming formulation.

The two modeling constructs described herein incorporate quantitative psychol-

ogy and decision science theory within a mathematical programming construct to

enable the comprehension and regulation of competitive influence with the intent

of providing models capable of informing defensive security policy. The remainder

of this research details these contributions as follows. Section 3.2 formally defines

prospect games; describes how they relate to existing psychological, economic, and

neuroeconomic literature; and discusses appropriate solution methodologies. Section

3.3 defines regulated prospect games under a general game theoretic solution concept;

provides three mathematical programming formulations of these games under specific

game theoretic solution concepts; and explores suitable solution methods under vary-

ing baseline assumptions. An illustration of how these models can be used to inform

national security policy is provided in Section 3.4, followed by concluding remarks in

Section 3.5.

3.2 Prospect Games

Whereas the persuasion programs of Caballero et al. (2018) model a single per-

suader interacting with a group of decisionmakers, a prospect game (PG) considers

multiple persuaders simultaneously influencing the decisionmaker population. More

formally, in a PG, multiple persuaders simultaneously compete to alter a decision-

maker(s) decision tree, and/or the decisionmakers’ evaluation thereof. The persuaders
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act first, and then the decisionmakers (i.e., the populace) select a prospect. Such a

structure, as displayed in Figure 8, is consistent with many modern influence cam-

paigns.

Figure 8. PG with 3 Persuaders each having 3 Actions, and n decisionmakers

Each persuader is self-interested and desires the decisionmakers to each select

some respective prospect. These prospects may or may not coincide for any given

persuader-and-decisionmaker combination. The objective within a prospect game

is not to optimize a single persuader’s decision, but to model and understand the

strategic interaction between persuaders competing to influence the same populace

of decisionmakers. Once this interaction is understood, a decision can be made on

whether intervention is necessary. If intervention is required, the techniques described

in Section 3.3 describe how a collection of intervention strategies can be assembled.

The leaders-followers framework of a PG naturally lends itself to a bilevel pro-

gramming formulation. However, when solving a PG, the assumption that the deci-

sionmakers are boundedly rational in accordance with CPT allows for the problem’s
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transformation to a normal form game with CPT-determined payoffs. The incorpo-

ration of such boundedly rational decisionmakers is appropriate, given we model the

choices of humans in a descriptive, behavioral sense.

CPT was developed by Tversky and Kahneman (1992) via extensive human-

subject testing and has proven itself effective in the representation of human be-

havior. It is a descriptive theory of choice under risk and uncertainty that is an

alternative to the normative Expected Utility Theory. CPT is unique in its findings

that humans systematically overweight low probabilities, underweight high proba-

bilities, evaluate utility from a reference point, and experience losses stronger than

gains of the same value. Mathematically, these characteristics are represented by an

inverse-sigmoid shaped probability weighting function and an asymmetrical sigmoid-

shaped utility function (e.g., equations (19a)–(19d)). Although, there exists multiple

specific forms of these functions, they are all characterized by some parameters alter-

ing the subadditivity of the probability weighting function (e.g., γi in equation (19a)),

the decisionmaker’s loss aversion (e.g., λi in equation (19d)) and the utility function

curvature (e.g., αi in equation (19c)). Therefore, CPT provides a flexible, descriptive

and deterministic basis for modeling the populace’s behavior and, as explained later

in this Section 3.2, enables standard game theoretic techniques to be utilized when

solving a PG.

In this section, we formally define prospect games by incorporating the follow-

ing assumptions: (1) persuader action spaces are discrete; (2) the populace members

respectively make a decision from among a finite set of actions in accordance with

Cumulative Prospect Theory; and (3) decisionmaker prospects, CPT-related param-

eters, and the effect of exogenous actions on those parameters are known. This final

assumption indicates that PGs in the form presented are most useful in situations

wherein decisionmaker behavior is well-studied; however, as discussed in Section 3.3,
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PGs can be altered to a Bayesian context to accommodate more uncertain environ-

ments. Moreover, the models presented herein deliberately maintain generality of the

following options to ensure their versatility: (1) type of uncertainty (i.e., risk or ambi-

guity); (2) form of decisionmakers’ CPT utility and probability weighting functions;

(3) rationality of persuaders; and (4) specific nature of discrete persuader action.

Defining Prospect Games.

The behavior of persuaders in a PG depends upon the choices of the decision-

makers, which are in turn characterized by CPT. Given the persuaders’ actions, CPT

provides a deterministic model of the followers’ behavior that can be utilized to dis-

cern each leader’s utility and reduce the game to a normal form setting. Therefore,

the modeling of each respective decisionmaker via their CPT parameters and deci-

sion trees constitutes the foundation of the game and is accomplished utilizing the

following sets, and variables.

Sets

I : Decisionmakers upon which persuasion is being conducted of the form

I = {1, 2, ...}

P : Set of persuaders of the form P = {1, 2, ...}

A : Set of persuader action profiles such that A = A1 ×A2 × ..., where Ap

is a finite set of actions available to persuader p

S : Set of persuader mixed-strategy profiles such that S = S1 × S2 × ...,

where Sp is the set of all probability distributions over Ap

Ji : Set of ni prospects offered to each member i of the form Ji = {1, ..., ni}
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Kij : Set of mij events (i.e., outcomes) for member i in prospect j of the form

Kij = {1, ...,mij}

Ωu : Some subset of Kij such that {Ωu ∈ Kij : 1 ≤ |Ωu| ≤ mij}

CPT Variables

xijk : Gain/loss for member i for kth event of prospect j after a ∈ A

pijk : Probability of kth event of prospect j for member i after a ∈ A;

used in conditions of risk

pijΩu : Judged probability that the disjunction of events in Ωu occurs after

a ∈ A;usedinconditionsofambiguity

γi : Gain probability weighting coefficient for member i after a ∈ A

δi : Loss probability weighting coefficient for member i after a ∈ A

αi : Gain utility curvature coefficient for member i after a ∈ A

βi : Loss utility curvature coefficient for member i after a ∈ A

λi : Loss aversion coefficient for member i after a ∈ A

ri : Reference point for member i after a ∈ A

A given collective action a ∈ A by the persuaders establishes the decision setting

for each decisionmaker. We allow for the underlying probability weighting, utility

curvature, loss aversion, and reference point parameters to be altered, a modeling

choice we discuss in Section 3.2. Henceforth, the caret notation distinguishes be-

tween baseline CPT parameters and their updated values after action a (e.g., γ̂i and

64



www.manaraa.com

γi, respectively). Moreover, for each prospect j ∈ Ji, persuasive actions may alter the

outcome value (i.e., from x̂ijk to xijk) or the uncertainty (i.e., from p̂ijk to pijk and

from p̂ijΩu to pijΩu) associated with any k ∈ Kij. The variable pijk is utilized under

conditions of risk, whereas pijΩu is required for conditions of ambiguity in accordance

with the belief-based model of CPT by Fox and Tversky (1998). The generic structure

of a prospect game allows for each of these parameters to be updated as a function of

a; however, some may be assumed to be constant without loss of generality. The psy-

chological and neuroeconomic justification for such update functions is also discussed

in Section 3.2.

Each decisionmaker discerns the value for every prospect in accordance with CPT

as indicated in equations (11)–(17) (Tversky and Kahneman, 1992). A reader familiar

with decision science may recognize equation (11) as the sum of two Rank-dependent

Utility (RDU) functionals. CPT can be viewed as a generalization of RDU that

incorporates all three components of risk attitude: utility curvature, probabilistic

sensitivity, and loss aversion (Wakker, 2010).

Vij(a) = V +
ij (a) + V −ij (a),where (11)

V +
ij (a) =

z∑
l=1

π+
ijl(a)v+(xijl,a), (12)

V −ij (a) =
0∑

l=−y
π−ijl(a)v−(xijl,a), (13)

π+
ijz(a) = W+(Eijz,a), (14)

π−ij(−y)(a) = W+(Eij[−y],a), (15)

π+
ijl(a) = W+(Eijl ∪ ... ∪ Eijz,a)−W+(Eij[l+1] ∪ ... ∪ Eijz,a), 0 ≤ l ≤ z − 1 (16)

π−ijl(a) = W+(Eij[−y] ∪ ... ∪ Eijl,a)−W+(Eij(−y) ∪ ... ∪ Eij[l−1],a), −y ≤ l ≤ 0. (17)
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For each individual i, a prospect j, having mij total outcomes, is separated into z

gain outcomes and y loss outcomes, each having an associated value xijl gain/loss

from the reference point. The value of the prospect, Vij(a), is calculated as the sum

of the gain and loss values (e.g., V +
ij (a) and V −ij (a)) that are respectively calculated

as the sumproduct of π±ijl and v±. That is, each outcome’s gain and loss values are

determined via the decision weight and utility functions (e.g., equations (12) and

(13)). The decision weights are calculated as the marginal difference of the event

weighting function, W+ or W−, for gain and loss ranks, respectively, wherein a gain

rank of event k is the probability of receiving a better outcome, and a loss rank is

the probability of a worse outcome (Wakker, 2010). Likewise, the value function is

generally modeled in a piecewise nature allowing for different functional forms of gains

and losses (i.e., v+ and v−) .

Based on the results of Fox and Tversky (1998), the probability weighting func-

tions, w±, can be used as the event weighting function, W±, in conditions of risk or

uncertainty. However, these results hold under the assumption that judged probabil-

ities satisfy a non-extensional theory of subjective probability (i.e., support theory).

Therefore, the specific probabilities utilized in the weighting functions under condi-

tions of risk are different than those under uncertainty, as seen in equations (18a)

and (18b), respectively. The difference between the two equations derives from the

preservation of the extensionality property under risk and its loss under uncertainty.

That is, under uncertainty, the subjective probability of event Eijl∪ ...∪Eijs must be

solicited directly whereas, under conditions of risk, it can be calculated as the sum of

pijl, ..., pijs.

W±(Eijl ∪ ... ∪ Eijs,a) = w±
( s∑
t=l

pijt,a
)

(18a)

W±(Eijl ∪ ... ∪ Eijs,a) = w±
(
pij[Eijl∪...∪Eijs],a

)
(18b)
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Maintaining consistency with Caballero et al. (2018), we adopt the original functions

of Tversky and Kahneman (1992) in our worked examples, as depicted in equations

(19a)–(19d). However, they are not fundamental to the modeling approach examined

herein, and an interested researcher may chose to adopt alternatives forms for either

the utility or probability weighting functions (e.g., see Prelec, 1998; Wakker, 2010)

w+(pijk,a) =
pγijk(

pγijk + (1− pijk′)γ
)γ−1 , (19a)

w−(pijk,a) =
pδijk(

pδijk + (1− pijk′)δ
)δ−1 , (19b)

v+(xijk,a) = xαiijk, (19c)

v−(xijk,a) = −λ(−xijk)βi . (19d)

Each player i is assumed to select the prospect j that maximizes equation (11).

The collective selection of prospects by all players in I determines the persuaders’

payoffs. This information is determined by the variables φip = f(Vi(a), qip),∀ i ∈

I, p ∈ P where Vi(a) is the CPT evaluation of all prospects Ji, qip is the prospect

persuader p desires decisionmaker i to select, and f : Vi(a)× qi → {0, 1}. It is helpful

to envision φip as constituting elements in a matrix Φ wherein a value of one in the

entry (i, p) indicates that decisionmaker i prefers the prospect desired by persuader

p, and zero otherwise.

For some a ∈ A, the utility vector for the persuaders is defined as

θa = {g1(Φ,a), g2(Φ,a), ..., g|P|(Φ,a)}, (20)

such that gp(Φ, a) calculates a persuader’s utility for the decisionmaker preferences in
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Φ and some collective action a = (a1, a2, ...) wherein each persuader p independently

controls the variable ap. A given persuader’s utility can be determined based upon

a myriad of factors, such as whether a decisionmaker prefers prospect qip or acted in

accordance to a competitor’s desire, as well as the amount of resources expended in

influential action compared to other persuaders. The θa-values can be aggregated to

form the set of vectors Θ = {θa, ∀ a ∈ A}. Therefore, since the action space A is

finite, we can define a normal form game via the tuple (P ,A,Θ).

On the Malleability of Prospects and CPT Parameters.

Human decisions are shaped by subjective evaluations of uncertainty and value,

emotions, and a variety of other psychological phenomena (Kahneman, 2011; Lerner

et al., 2015). Therefore, persuader actions in this research are allowed to affect

the perception of an outcome’s likelihood, the perception of an outcome’s value,

and/or an individual’s CPT-parameter values, and in this way the persuaders are

able to affect the populace’s evaluation of their respective decision trees. Because

such a perspective does not have consensus among decision-science scholars, we briefly

review the neuroscientific literature supporting this point of view. However, for a

more thorough literature review spanning multiple disciplines (e.g., neuroeconomics,

psychology, and management science), we refer the reader to Caballero et al. (2018).

The empirical evidence from economics studies suggesting the dynamic nature of

risk attitude is reinforced by pharmacological experiments in neuroscience. Crockett

and Fehr (2014) provided an overview of the evidence suggesting that the release of

certain neuromodulators affect behavior in risky choice. Studies have shown dopamine

to promote risky-choice (Imamura et al., 2006; Eisenegger et al., 2010; Crockett and

Fehr, 2014), and the ingestion of amphetamines has been shown to affect behavior

analogously (Onge and Floresco, 2009). Other research efforts are ongoing to deter-
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mine how different neuromodulators, such as serotonin and norepinephrine, contribute

to establishing risk attitudes (Crockett and Fehr, 2014).

Louie and De Martino (2014) provided support to the malleable nature of risky

choice by invoking the neurobiological efficient coding hypothesis (Barlow, 1961). This

hypothesis postulates that, due to the brain’s inherent biophysical constraints (e.g.,

neuron firing rate and metabolic costs), efficient neural input-output functions are

formed based on some expected range of input values. Should the range of input pa-

rameters change, the associated neural function changes as well, in a process falling

under the general category of gain control (Louie and De Martino, 2014). This un-

derlying behavior of the brain at the neuronal level is related to the results of Stewart

et al. (2006) and Stewart et al. (2015), who linked phenomena explained by CPT with

an individual performing comparisons to previous experiences in working memory.

Taken collectively, these studies suggest some malleable, neurological phenomena

drives risk attitudes, and the impact of a persuasive action on it can be estimated.

Therefore, we proceed with the assumption that these factors have been estimated via

human subject testing; it is our intent that the following models and accompanying

solutions methods presented demonstrate the utility that can be gained from such

human subject testing and thereby motivate it within the discipline.

Solving Prospect Games.

The solution concept utilized for the game (P ,A,Θ) depends upon the persuaders’

assumed rationality. If they are assumed to be perfectly rational, then traditional

game theoretic concepts are applicable (e.g., Nash equilibrium, ε-Nash equilibrium,

trembling hand equilibrium, maxmin or minmax payoffs, et cetera), depending on the

context (Shoham and Leyton-Brown, 2008). However, if the persuaders are assumed

to be boundedly rational, solution concepts from behavioral game theory, such as
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the cognitive hierarchy model (Camerer et al., 2004) or quantal response equilibrium

(McKelvey and Palfrey, 1995), are appropriate and should be compared to solutions

found via perfect rationality analysis. In either scenario, these solution concepts are

expressed in terms of mixed strategies. That is, the solution is represented as a

collection of probability distributions S ∈ S. In a given solution, each persuader’s

strategy is probabilistic and denoted as the vector Sp composed of the elements Spl

for each l ∈ Ap.

In addition to the difference in underlying rationality assumptions, the algorithms

utilized in a perfectly rational or a boundedly rational setting have distinct character-

istics. For example, the computation of a Nash equilibrium for two-player games can

be computed efficiently as a linear program or a linear complementarity problem in

the zero-sum and general-sum cases, respectively. However, an n-player, general-sum

game requires a more complex formulation as a nonlinear complementarity problem.

Games also may have multiple Nash equilibrium and, in the worst-case, even a two-

player, general-sum game requires a solution time that is exponential in the number

of actions of each player (Shoham and Leyton-Brown, 2008). Moreover, even if all of

these equilibriums are found, it is difficult to distinguish among them systematically.

From this standpoint, the maxmin or minmax payoffs solution concepts are benefi-

cial in that they can be computed quickly and provide a single prediction (Shoham

and Leyton-Brown, 2008). Such characteristics are shared by many boundedly ratio-

nal solution concepts. For instance, the cognitive hierarchy model (Camerer et al.,

2004) can be computed efficiently and yields a single prediction for a given set of

assumptions.

In practice, it may be advisable to examine many games under varying assump-

tions of persuader effects. The utility garnered, by both persuader and decisionmaker,

in some competitive persuasion scenarios is difficult to discern and must be estimated.

70



www.manaraa.com

Therefore, inputs utilized by any solution concept involve an accumulation of experi-

mental error. By analyzing a variety of games that constitute some confidence interval

of utility and persuasion effects, a regulator is able to generate an expected range of

behavior and ensure greater robustness with respect to estimation error.

Finally, multiple solution concepts should be considered when analyzing a prospect

game, especially when the goal is to inform a regulator of expected outcomes under

null action. Generally speaking, multiple solution concepts should be examined to

garner collective insights since no single solution method dominates all others but

instead depend upon specific rationality assumptions. Therefore, in Section 3.4, we

utilize the solution concepts of the Nash equilibrium, correlated equilibrium, and

cognitive hierarchy model in an effort to understand persuader interaction.

3.3 Regulated Prospect Games

Regulated prospect games (RPGs) are an extension of PGs wherein an external

regulator attempts to affect persuader behavior in equilibrium. Figure 9 illustrates

this framework.

Figure 9. Structure of Regulated Prospect Games

We allow for the strategy space of a regulator to be continuous or discrete. As
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with the persuaders, no assumptions are made regarding specific means by which

their actions modify decisionmaker or persuader behavior. Such actions may change

the structure of the game or, potentially, the psychology of subsequent agents when

selecting a course of action.

An RPG can be considered a trilevel program wherein the regulator, persuaders

and the decisionmakers are the first, second and third level entities, respectively.

However, in this section, we describe how the PG reduction from the previous section

can be utilized to transform an RPG to a bilevel program and how the utilization of

specific game theoretic solution concepts enables further transformation to a single-

level form.

Examining the special cases of RPGs under the same three solution concepts (i.e.,

Nash equilibria, correlated equilibria, and cognitive hierarchy), we examine how the

problems can be solved. For some instances, a commercial solver is readily able

to solve an RPG. However, for those instances wherein a commercial solver proves

insufficient, heuristic methods to attain quality, feasible solutions for the regulator

are discussed.

Defining Regulated Prospect Games.

A regulator must chose some action b from a set of possible intervention strategies,

B, to affect the game (P ,A,Θ). The regulator may impact actions available to the

persuaders, alter persuader payoffs directly or via decisionmaker preferences effects,

or in the case of boundedly rational persuaders, their ability to think strategically.

An RPG maintains the same payoff structure as a PG for both decisionmakers

and persuaders, but it adds an additional element pertaining to the regulator’s payoff.

RPGs levy an additional layer of complexity to PGs, as their task is, essentially, to

modify the game to be played by the persuaders. Therefore, regardless of the assumed
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rationality of the persuaders, an RPG can be formulated as a bilevel program in the

following manner:

max
b

h1(S,b)

subject to b ∈ B,

max
S

∑
a∈A

g1(Φ,a,b)
∏
p∈P

Spap ;
∑
a∈A

g2(Φ,a,b)
∏
p∈P

Spap ; ...

s.t.: S ∈ S(b),

where

φip = f(Vi(a,b), qip), ∀ i ∈ I, p ∈ P. (21)

The upper level problem dictates the regulator take an action b ∈ B to maximize

the objective function h1(S,b). In turn, this action can affect the set of feasible per-

suader strategies, S(b). For our purposes, we assume all possible actions of a player

p are included in Ap, and a regulator action b can only remove, not add, from this

set. Regulator action, in conjunction with the persuaders’ actions, may also alter

the decisionmaker preferences, and this effect is modeled generically by representing

the CPT prospect valuation vectors as Vi(a,b). Likewise, to account for instances

wherein the regulating action has a direct impact on a persuaders payoff (e.g., mone-

tary fines) the vector of regulating actions, b, is represented in the persuaders’ payoff

functions as gp(Φ, a,b). For a given b ∈ B, the persuaders’ payoffs are determined as

in a PG. Thus, the lower-level optimization problem is decentralized; each persuader

p controls a subset of the variables, Sp, and maximizes their respective objectives
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simultaneously.

An RPG has a PG embedded in its constraints, and can be viewed as a mechanism

design problem with a singleton set of joint type vectors. However, should a regulator

decide to analyze a set of games, such as those formed from a range of estimates with

respect to utility and persuasion effects, and calculate a probability distribution over

this set, the cardinality of the joint type vector can be expanded. In this case, the

RPG exists in a Bayesian setting and is more reminiscent of traditional mechanism

design problems. The resulting math programs are very similar except for a few

additional constraints. That is, the inequalities illustrated in the following programs

must be repeated for every game such that each has its own corresponding block

of constraints, and the objective function must be modified to an expected value

computation.

The bilevel program representing an RPG can be analyzed in a variety of ways

depending upon both persuader rationality assumptions and the adopted solution

concept. We continue by illustrating three special cases corresponding to persuaders

behaving in accordance with the Nash equilibrium, correlated equilibrium, and cog-

nitive hierarchy model solution concepts.

Perfect Rationality: Nash Equilibrium.

If it is assumed the persuaders are perfectly rational, and it is desired to discern

regulator action under a Nash equilibrium, the RPG can be reformulated as a single-

level program by adapting the framework of Shoham and Leyton-Brown (2008) with

regard to n-player, general sum games.
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max
S,b

h1(S,b) (22a)

subject to b ∈ B, (22b)∑
a∈A|ap=l

gp(Φ,a,b)
∏
z 6=p

Szaz −
∑
a∈A

gp(Φ,a,b)
∏
z∈P

Szaz ≤ 0,

∀p ∈ P, l ∈ Ap,
(22c)

∑
l∈Ap

Spl = 1, ∀p ∈ P, (22d)

Spl ≤ h2(b, Spl), ∀p ∈ P, l ∈ Ap, (22e)

Spl ≥ 0, ∀p ∈ P, l ∈ Ap, (22f)

where

φip = f(Vi(a,b), qip), ∀ i ∈ I, p ∈ P.

In this reformulation, the left-hand side of constraint (22c) represents the effect

of persuader p deviating from their respective Sp strategy to the pure strategy l. If it

is negative-valued, the persuader is better off not deviating. Therefore, if constraint

(22c) is satisfied for all persuaders and available actions, then no one has incentive

to deviate from their respective strategy Sp, and S is a Nash equilibrium. The con-

straints (22d)–(22f) ensure a persuader’s mixed strategy profile abides by the tenets

of probability theory, and they also allow for the possibility of a regulator removing

some action l in Ap for persuader p. That is, h2(b, Spl) is assumed to utilize the

regulator action (i.e., b) and an element of a persuader’s mixed strategy (i.e., Spl) as

inputs, and it maps them to the binary outputs, {0,1}, that form an upper bound on

Spl. Therefore, if this mapping yields an output of zero, the regulator has removed
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action l from consideration by persuader p.

Furthermore, this formulation implicitly adopts an optimistic regulator as detailed

in the bilevel programming literature (e.g., see Dempe, 2002; Colson et al., 2007), and

it assumes the persuaders will adopt the Nash equilibrium that is most beneficial to

the upper level objective function. All other Nash equilibriums are feasible, but this

optimistic assumption allows the regulator to distinguish between them, and their

associated objective function values. By setting the b-values that yield this opti-

mistic solution as parameters and resolving the program by minimizing the objective

function instead of maximizing it, the regulator is able to determine the associated

solution’s pessimistic solution. In this manner, the regulator is able to identify the

down-side risk associated with their optimistic solution.

Perfect Rationality: Correlated Equilibrium.

If persuaders are perfectly rational, but it is desired to discern regulator action

under the correlated equilibrium solution concept, the bilevel program can be sim-

plified further. A correlated equilibrium can be interpreted as relating to a public

signal. That is, if all players in a game prefer to abide by the “recommendations”

provided by an external agent, the resulting profile is a correlated equilibrium. In

this setting, the regulator’s task is to determine a probability vector S ′ composed of

elements S ′a for every a ∈ A such that no player prefers to deviate from a when it

is signaled. Utilizing the notation µa to signify the action profile a with a unilateral

deviation of µa
p by player p, and the function h3(a,b) → {0, 1} to indicate whether

regulator action b removed the possibility of persuader action a, the problem can be

expressed as follows the following program (Shoham and Leyton-Brown, 2008):
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max
S′,b

h1(S′,b) (23a)

subject to b ∈ B, (23b)∑
a∈A|ap=l

S′agp(Φ,a,b) ≥
∑

a∈A|ap=l

S′agp(Φ, µ
a,b)h3(µa,b),

∀p ∈ P, l ∈ Ap, µap 6= l

(23c)

S′a ≤ h3(a,b), ∀a ∈ A (23d)

S′a ≥ 0, ∀a ∈ A, (23e)∑
a∈A

S′a = 1. (23f)

where

φip = f(Vi(a,b), qip), ∀ i ∈ I, p ∈ P.

Constraint (23b) ensures the decision variables S ′ and b constitute a correlated

equilibrium. Constraints (23d)–(23f) constrain the signaled probabilities analogously

to how constraints (22d)–(22f) bound the persuaders’ mixed strategies. However, due

to the signaling nature of a correlated equilibrium, the assumption of optimism is no

longer required as in the previous Nash equilibrium formulation. Although a game

may have many correlated equilibria, the probability vector S ′ is actually controlled

by the regulator and they are free to select it in accordance with their preference.

Bounded Rationality: Cognitive Hierarchy.

The math programming reformulations presented thus far in this section focus on

the case of perfectly rational persuaders. Such a tendency for optimization models to
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assume perfectly rationality is due to the fact that many boundedly rational solution

concepts are heuristic in nature; they are designed to replicate imperfect psychological

processes that do not always translate, in a strict sense, to an optimization framework.

However, in this section, a boundedly rational solution concept is considered that

maintains the concept of utility maximization but relaxes assumptions regarding an

individual’s understanding of his opponents that allows for modeling via mathematical

programming formulations.

The cognitive hierarchy model (Camerer et al., 2004) assumes players are defined

by the number of reasoning steps they compute in selecting an action, and their

beliefs with regard to the number of steps utilized by their opponents. Players do

not believe other agents can use as many reasoning steps as they do (i.e., a κ-step

player believes their opponents are [κ-1]-step players or less). A game is assumed to

be characterized by a true probability distribution over the number of reasoning steps

a player utilizes. Generally, a Poisson distribution defined by the parameter τ is used.

This true distribution, f̂(ζ), is assumed to be perceived accurately by a κ-step player

but normalized to inform their beliefs about their opponents (i.e., their beliefs of the

proportion of h-step players are represented as ρκh = f̂(h)/
∑
ζ<κ f̂(ζ).

Therefore, a structure similar to that utilized for modeling persuader behavior

under the Nash equilibrium solution concept can be adopted as follows with the in-

corporation of a set of new decision variables, Sκpl, that indicate the probability of

persuader p employing strategy l when utilizing κ-steps of thought. This model as-

sumes play will occur in accordance with the cognitive hierarchy model’s expectation

over a population defined by τ .
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max
S,b

h1(S,b) (24a)

subject to b ∈ B, (24b)

τ = h4(b, τ̂) (24c)

ρκh =
f̂(τ, h)∑
y<κ f̂(τ, y)

, ∀κ < M, h < κ, (24d)

S0
pap =

1

|Ap|
, ∀p ∈ P, (24e)∑

h<κ

∑
a∈A|ap=l

ρκhgp(Φ,a,b)
∏
z 6=p

Shzaz −
∑
h<κ

∑
a∈A

ρκhgp(Φ,a,b)
∏
z∈P

Shzaz ≤ 0,

∀p ∈ P, l ∈ Ap, κ < M,

(24f)

Spl =
∑
κ<M

f̂(κ)Sκpl, ∀p ∈ P, l ∈ Ap, (24g)

∑
l∈Ap

Sκpl = 1, ∀p ∈ P, κ < M, (24h)

Spl ≤ h2(b, Spl), ∀p ∈ P, l ∈ Ap, (24i)

Sκpl ≥ 0, ∀p ∈ P, l ∈ Ap, κ < M (24j)

Spl ≥ 0, ∀p ∈ P, l ∈ Ap, (24k)

where

φip = f(Vi(a,b), qip), ∀ i ∈ I, p ∈ P.

It has been shown that different game structures can generate alternative values of

τ (Camerer et al., 2004). This behavior is modeled via constraint (24c) by assuming

the function h4(b, τ̂) updates this value based on regulator action, and the value

τ̂ associated with the baseline persuasion game (i.e., null regulator action). This
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value is utilized in constraint (24d) to update the perceived probabilities of a κ-level

player wherein f̂(τ, h) is the Poisson probability density function of h with rate τ .

Constraint (24e) ensures all 0-step players randomize uniformly and constraint (24f)

ensures a κ-step persuader selects their perceived best response. The strategies of

all κ-step players are then aggregated as in Camerer et al. (2004) to provide the

behavioral predictions of play in the cognitive hierarchy model via constraint (24g).

The remaining constraints ensure the tenets of probability are not violated and allow

for the regulator to remove strategies via the function h2(b, Spl) as defined previously.

Camerer et al. (2004) assumed for simplicity that players would “randomize equally

if two or more strategies have identical expected payoffs” but acknowledged the cogni-

tive hierarchy model could address other methods. Therefore, no explicit assumptions

are made herein regarding how players distinguish between strategies yielding equal

payoffs.

Solving Regulated Prospect Games.

Optimally solving one of the aforementioned mathematical programs is not a sim-

ple task. To illustrate this point, first consider the determination of φip via equation

(21). The function f maps the persuaders’ action vector, a, and the regulator’s ac-

tion vector, b, into a binary response for a given persuader p and a decisionmaker i.

Therefore, aside from the trivial case wherein φip is constant, the function will exhibit

discontinuities when φip switches to either 0 or 1. The functions gp(Φ, a,b) will ex-

hibit similar discontinuities because they depend on these φip variables. Moreover, the

function f implicitly concerns a maximization operation coupled with a decision prob-

lem. That is, for some decisionmaker i and persuader p if qip = argmaxj{Vij(a,b)},

then φip = 1 and zero otherwise.

These difficulties are compounded by the nonlinearities associated with determin-
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ing the values in the vector Vi(a,b). To calculate these values, a sorting operation

that orders the prospects according to ascending outcome value is required for use

in equations (14)–(17). Once accomplished, further nonlinearities are encountered in

equations (19a)–(19d), albeit via an effect that depends on what CPT parameters are

assumed to be malleable by the persuaders and regulator.

Even if these difficulties are set aside, the underlying problem of ascertaining a

game theoretic solution (e.g., a Nash equilibrium) may be a non-trivial endeavor

(Shoham and Leyton-Brown, 2008). Therefore, solving the induced PG for a given

b may itself be a difficult problem. This property is intensified in an RPG, as the

regulator is trying to build an optimal game with these equilibrium conditions in the

constraints.

Therefore, even though the characterization is ultimately dependent on the form

of the regulator action space and the possible effects of regulator or persuader action

on decisionmakers, in many RPG instances a global commercial solver is required

to find an optimal solution due to the aforementioned difficulties. However, in some

instances, even these tools may be inadequate.

Let us first consider a situation for which a global commercial solver can be applied

effectively. If a regulator is unable to affect decisionmakers’ preferences, the payoff

structure of the underlying PG can be calculated by determining the effect of each

a ∈ A on Φ. With this the baseline game structure, Φ is fixed and the agents’ payoffs

(regulator or persuader) depend only on b and S (or S ′). The three mathematical

programs previously introduced can then be solved to determine the optimal punitive

action b and the associated game theoretic solution value.

Conversely, if the regulator is able to affect decisionmaker preferences, the instance

may be more difficult to solve optimally. To illustrate this property, consider that

each outcome k ∈ Kij for every decisionmaker i and prospect j, must be sorted
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and classified as a gain or loss in order to determine each φip. Caballero et al.

(2018) constructed a set of constraints utilizing matrices of binary decision variables

that, when satisfied, ensured the CPT-valuations are calculated correctly. However,

commercial solvers are not designed to sort values and generally perform inefficiently

at the task. The technique utilized in Caballero et al. (2018) required 2|Kij|2 binary

indicator variables for each combination of i ∈ I and j ∈ Ji, and their technique

becomes computationally burdensome as instances grow large. Therefore, alternative

methodologies are proposed to solve these RPGs, depending upon the form of the

regulator’s action space.

If the regulator action is discrete, we can avoid the computational difficulty asso-

ciated with determining φip by enumerating all possible games a regulator action can

create. By calculating off line the decisionmakers’ choices for each a ∈ A and b ∈ B,

and replacing gp(Φ, a,b) with λp(Φ, a, ν
b) as seen in equation (25), the computational

difficulties associated with CPT are not encountered by the solver. Instead, their dy-

namics are incorporated in the off line calculations that determine persuader utility.

Formally, the three special case RPGs can be modified by introducing

λp(Φ,a, νb) =
∑
b∈B

νbgp(Φ,a,b), (25)

and adding the constraints

∑
b∈B

νb = 1; νb ∈ {0, 1} ∀b ∈ B.

Via off line calculation, the φip values are determined for each b, and the corresponding

gp(Φ, a,b) are calculated for each persuader b and action profile a. These values can

then be input into the RPG formulations as parameters and constraints (22b), (23b),

or (24b) can be removed, as appropriate, because the regulator’s action space has

been enumerated.
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If regulator action is continuous, an RPG no longer pertains to the selection of a

game among a countable set, but rather optimization among a continuum of games.

Therefore, the off line calculation method can no longer be leveraged as a simplifica-

tion tool. The dynamics of CPT-value calculation would need to be computed within

the solver and, as previously discussed, such a procedure is inefficient, especially when

there exists a large group of decisionmakers. Therefore, to solve such RPGs, the ac-

tion space can be approximated via discretization, or an alternative heuristic can be

utilized.

A variety of heuristic or meta-heuristic methods can be utilized to solve an RPG

(e.g., genetic algorithm or simulated annealing); however, since the objective function

depends upon the equilibrium (or alternative game theory solution concept) profile,

these methods still must solve a PG for each candidate solution. In light of the

aforementioned computational limitations in solving equilibrium problems, we suggest

B be searched via efficient sampling, and advocate for the use of a direct search

algorithm such as the Generalized Pattern Search (Lewis and Torczon, 1999) or Mesh

Adaptive Direct Search (Audet and Dennis Jr., 2006).

3.4 Example Application: Deterring Electoral Interference

In this section, we consider a notional example that illustrates the utility of PGs

and RPGs, and we demonstrate the analysis and insights they can generate for the

regulation of competitive persuasive interactions. More specifically, we consider the

problem of a democratic government deterring improper interference in its presidential

election. Such an application is particularly appropriate in a complete information

environment given the large amount of human-subject testing conducted with regard

to voting behavior.

The regulator is a democratic government; the persuaders are three organizations
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having vested interests in the electoral outcome, identified as Entities 1-3; and the

decisionmakers are a subset of targeted voters, as depicted in Figure 10. In this

scenario, we assume the regulator exerts limited (i.e., not authoritarian) control and,

as such, the government is unable to completely disallow any persuader strategy (i.e.,

h2(b) = h3(b) = 1, ∀ b ∈ B). Instead, the persuaders must be incentivized to take

a desired course of action. Likewise, given the political nature of an election, the

regulator is assumed to take no action that affects decisionmaker preferences directly.

Figure 10. Deterring Improper Electoral Interference as a Regulated Prospect Game

This example considers a political primary with eight candidates, six of whom

conform to traditional party standards (i.e., Candidates 1 through 6) and two of

whom represent a shift from the party’s conventional platform (i.e., Candidates 7

and 8). It is assumed that Candidate 7 is sympathetic to positions espoused by

Entities 1 and 2, whereas Candidate 8 holds positions aligned with to Entity 3.

Voters are partitioned among several blocks that respectively aggregate and rep-

resent voters who behave in a similar manner (i.e., voters within a block have CPT
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parameters, utilities and associated probabilities assumed to be identical). A deci-

sionmaker is therefore a representative voter from the block that decides for whom

to vote based upon the candidate’s appeal (xijk), which is interpreted as a gain or

loss respective to the sitting president, and their subjective assessment of him or her

winning (pijk). Whereas a voter could make a decision by explicitly considering the

actions of all other voters, in a manner analogous to that discussed by Levy (2003),

we model this scenario as a decision problem wherein a voter’s perception of the

preferences of others informs their likelihood assessment that a candidate will win.

We model n = 50 blocks of voters with static CPT-parameter profiles (i.e., persua-

sion does not affect risk attitude). More specifically, we assume voter blocks evaluate

the lotteries utilizing equations (19a)–(19d) in accordance with the randomly assigned

parameters listed in Table 7, wherein the initial gain/loss values (x̂ijk) and their as-

sociated probabilities (p̂ijk) can also be found. Each voter’s CPT-parameters are

sampled from a uniform distribution with a median estimate consistent with Tversky

and Kahneman (1992), and the prospect-specific parameters (i.e, x̂ijk and p̂ijk) are

established to allow heterogeneous initial voter perception. Since PGs and RPGs

require these parameters to be known, we primarily focus on a single instantiation

of the underlying PG in Sections 3.4 – 3.4 using the randomly generated point es-

timates. However, in Sections 3.4 and 3.4, we discuss how our models can inform

further analysis should these parameters be uncertain.

Table 7. Uniform Distribution on voter CPT-parameters, and x̂ijk- and p̂ijk-values

αi βi λi δi σi x̂ijk p̂ijk
[0.80, 0.96] [0.80, 0.96] [2, 2.5] [0.56, 0.66] [0.64, 0.74] [-1, 1] [0, 1]

Each persuader may take one of three actions with respect to the election by en-

gaging in an onslaught interference campaign (i.e., action O), illegal fringe operations

(i.e., action F), or law-abiding activity (i.e., action L). The collective action of these
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entities may affect each voters xijk- and pijk-values in the following manner:

xijk = x̂ijk +
∑
p∈P

tplijk, where l = ap

pij1 = p̂ij1 +
∑
p∈P

bplij1, where l = ap

pij2 = 1− pij1.

The parameters tplijk and bplijk are the effects that Entity p’s action l has on voter

i’s perception of the value and probability, respectively, associated with the k-th

outcome of voting for candidate j. Of note, the persuasion update for probabilities

is defined explicitly with respect to k = 1 for notational clarity in observance of

the axioms of probability. Each of the persuasion update parameters are randomly

selected in accordance with a uniform distribution over the range [-0.5,0.5] for tplijk

and [(1− p̂ij1)/3, p̂ij1/3] for bplij1 to allow for the possibility of meaningful persuasive

action.

Through their persuasive actions, each Entity p tries to maximize their own objec-

tive. Entities 1 and 3 are each assumed as seeking to maximize the number of voters

supporting their respective sympathetic candidate (i.e., Candidates 7 and 8 respec-

tively), whereas Entity 2 desires to create tension in the electorate by maximizing

support for both Candidates 7 and 8. Therefore, for any voter i, the corresponding

qip for Entities 1 and 3 correspond with Candidates 7 and 8, respectively, but Entity

2 has qip corresponding to Candidate 7 for half of the voter blocks and Candidate 8

for the remaining blocks.

Persuader utility is also affected by punitive measures imposed by the government

(i.e., the regulator). Mirroring the legislation proposed in the Deter Act in 2018

(Rubio and Van Hollen, 2018), this example considers possible regulating actions
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against two classes of financial assets (i.e., b1 and b2) in millions of dollars. These

sanctions affect each entity’s payoff as represented in equations (26)–(28):

Entity p’s Payoff (Onslaught): − 0.01b1 − 0.02b2 +
∑
i∈I

φip, (26)

Entity p’s Payoff (Fringe): − 0.01b1 +
∑
i∈I

φip, (27)

Entity p’s Payoff (Legal):
∑
i∈I

φip. (28)

The monitoring capabilities of the regulator are assumed to be robust such that the

true action taken by the persuaders can be detected. The coefficients assigned to a

sanction’s effect are notional but assumed to reflect the entity’s value calculus in the

mold of multi-objective decision analysis. For illustration purposes, this balance is

assumed to be identical across all persuaders.

Table 8. Regulator Objective Function Coefficient Values

Entity ξpO ξpF ξpL
1 -10 -2 1
2 -9 -3 1
3 -8 -1 1

The government would prefer all influence to occur in accordance with established

legal standards. However, if some form of interference by a persuader cannot be

prevented outright, the government’s preference is for fringe activity as opposed to an

aggressive, onslaught campaign. The negative effect associated with such interference

is assumed to vary depending on the entity’s capability and other political factors.

These notional effects are listed as ξpO, ξpF and ξpL in Table 8. Utilizing these effects,

the objective function of the government with respect to the Nash equilibrium or

cognitive hierarchy settings, and the correlated equilibrium setting can be seen in

equations (29) and (30), respectively. The two equations are conceptually identical
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but adapted to the terminology of the respective modeling frameworks.

max
∑
a∈A

(
S1a1S2a2S3a3

)(∑
p∈P

ξpap

)
− 0.01b1 − 0.02b2 (29)

max
∑
a∈A

S′a

(∑
p∈P

ξpap

)
− 0.01b1 − 0.02b2 (30)

Finally, the government’s decision variables b1 and b2 are both assumed to be

bounded within [$0, $60M ], and instances are considered such that they may take on

continuous values or discrete values on the order of millions of dollars.

Utilizing the models and methods described in Section 3.3, this RPG under the

solution concepts of Nash equilibrium, correlated equilibrium and cognitive hierarchy

are applied utilizing the global solver BARON on an HP Z820 equipped with a 2.60

GHz Intel E5-260 processor and 192GB of RAM.

Perfectly Rational Persuaders: Nash Equilibrium.

To understand whether intervention (i.e., regulation) is necessary, it is advisable

to first analyze the PG generated with null regulation. In this example, a null action

by the regulator would consist of no punitive sanctions being imposed for election

interference.

Figure 11. Induced Prospect Game with No Sanctions Imposed

The payoff structure of this PG can be seen in Figure 11 wherein the tuple in

each cell represents the number of voting blocks supporting the preferred candidate
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of Entity 1, Entity 2, and Entity 3, respectively. The optimistic-Nash equilibrium

with respect to the government’s objective function consists of the following pure

strategies: Entity 1 conducts an onslaught campaign, and Entities 2 and 3 take

lawful action. Under this persuader action profile, Candidate 2 garners the support

of the most voting blocks at 12, whereas Candidate 8 is in a three-way tie for third

and Candidate 7 is in sixth place. Furthermore, the government’s objective function

for this baseline has a value of -8. Under pessimistic assumptions such that the

entities play the equilibrium that most negatively affects the regulator, Entities 1

and 3 conduct onslaught campaigns and Entity 2 engages in fringe operations such

that the government’s objective function equals -21, a lower bound on the optimal

solution to the RPG.

Since this preliminary analysis finds interference will occur with certainty in the

election, intervention strategies should be considered. Therefore, equations (26)–(29)

are incorporated into the math program described in Section 3.3, and it is solved find

an optimal b.

The optimal solutions for when B is a continuous space, or when it is a discrete

space assuming integer-valued increments of millions of dollar, are very similar. In

the discrete variant, the government selects b1=$60M and b2=$53M , whereas in the

continuous instance the government levies sanction of b1=$60M and b2=$53.109M .

These punitive actions result in the mixed strategy equilibriums seen in Table 9,

wherein each entity’s strategy vector lists the probability of conducting an onslaught

campaign, fringe operations, or lawful activity, respectively. Given the relative prox-

imity of these two solutions, only the discrete variant is discussed hereafter.

Under this solution, the regulator’s objective function value with optimistic as-

sumptions increases to -2.8. The results also imply there is a probability of 0.556 that

all entities involved choose to engage in lawful activity, whereas without intervention
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Table 9. Election Inference RPG - Optimal Optimistic-Nash Equilibriums

Sp Discrete B Continuous B
S1 (0.098, 0.000, 0.902) (0.097, 0.000, 0.903)
S2 (0.000, 0.259, 0.741) (0.000, 0.256, 0.744)
S3 (0.168, 0.000, 0.832) (0.168, 0.000, 0.832)

there is no possibility of such an action profile occurring. However, the probability

that at least one entity will engage in an onslaught campaign is approximately 0.25.

This result represents a reduction from the PG with null regulation wherein Entity 1

conducted an onslaught campaign with certainty. Therefore, the sanctions are a stabi-

lizing influence, increasing the probability that the electoral process proceeds without

unlawful interference. Furthermore, under pessimistic assumptions, the government’s

objective function value increases from -21 to -9.66. In fact, the entity’s strategy pro-

files under the pessimistic-Nash equilibrium with b1=$60M and b2=$53M coincide

with the optimistic-Nash equilibrium of the aforementioned PG: Entity 1 conducts

an onslaught campaign, and Entity 2 and 3 take lawful action.

As noted previously, the government does not take any action to directly influence

the voters. However, the sanctions to deter interference have second-order effects

based upon how it changes the persuaders’ behavior. These effects can be observed

in Figure 12 wherein the probability distribution for each candidate of finishing the

election in a given position is depicted.

Consider the government’s ideal persuader action profile wherein all entities con-

duct operations in accordance with the law. Should this occur, the ultimate candidate

ordering after voting yields the following: Candidate 2, Candidate 5, Candidate 4,

Candidate 3 (tied for forth), Candidate 1 (tied for forth), Candidate 8, Candidate

6, and Candidate 7. This result differs slightly from the expected ordering of the

candidates if the mean of each distribution from Figure 12 is utilized as a measure

of central tendency. Namely, Candidate 2 still would be expected to win, but the
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ordering of candidates in other positions changes (e.g., Candidate 5 is expected to

finish third and Candidate 8 to finish fifth).

Figure 12. Distributions of Finishes for Optimistic-Optimal Nash Equilibrium RPG

These results also differ from the baseline PG wherein no sanctions are imposed.

Under the optimistic-optimal solution of the RPG, Candidate 2 places first with a 0.60

probability instead of certainty; Candidate 8 places in the top two positions with a

probability of 0.25 instead of a third-place tie with certainty; and Candidate 7 finishes

in the bottom two positions with a probability of 0.90 instead of sixth with certainty.

In maintaining the integrity of the election, the government actually increased the

probability that one of the entity’s preferred opponents wins (i.e., Entity 3 favored

Candidate 8). Superficially, such a result is counterintuitive; however, it is in fact

consistent with the government’s goal of safeguarding the election’s integrity and not

explicitly supporting any candidate.
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Perfectly Rational Persuaders: Correlated Equilibrium.

As in the Nash equilibrium instance, the PG depicted in Figure 11 is evaluated

first. In doing so, it is identified that the government’s preferred correlated equilibrium

is also the optimistic Nash equilibrium for the PG. Namely, with certainty Entity 1

conducts an onslaught campaign, and Entity 2 and 3 take lawful action.

Since Entity 1 will interfere with certainty in the election, intervention strate-

gies should be considered. Thus, equations (26)–(29) augment the math program

described in Section 3.3, and it is solved to find an optimal b and S ′.

The solutions for a discrete or continuous B coincide exactly with the government

instituting the maximum sanction values of b1 = b2 = $60M . The associated cor-

related equilibrium is depicted in Table 10 wherein a ∈ A is listed in order of the

entities (i.e., event FOL coincides with Entity 1 fringe operations, Entity 2 onslaught

campaign, and Entity 3 lawful activity). It can be observed that only 8 of the 27

possible collective actions are in the support, such that the remaining 19 have zero

probability of being signaled.

Table 10. Election Inference RPG - Optimal Correlated Equilibriums

S ′a Discrete B Continuous B
S ′LLL 0.659 0.659
S ′LLF 0.044 0.044
S ′LLO 0.093 0.093
S ′LFL 0.082 0.082
S ′FLL 0.082 0.082
S ′FFO 0.010 0.010
S ′FOF 0.029 0.029

When compared to the RPG’s optimistic Nash equilibrium solution, the govern-

ment can expect a higher probability of combined lawful actions by all entities. To

wit, in the Nash equilibrium variant, the government can expect such an event to

occur with a probability of 0.556 versus 0.659 in the correlated equilibrium instance.
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There also exists analogous reductions in the regulator’s objective function value,

and in the probability of one entity conducting an onslaught campaign. The optimal

objective function value increases from -2.8 under the optimistic-optimal Nash equi-

librium to -0.904 under the correlated equilibrium, and the probability of at least one

entity conducting an onslaught campaign reduces from approximately 0.25 to 0.132.

Such reductions are possible because all Nash equilibria are correlated equilibria (al-

though the reverse does not hold true) and, as such, the optimal objective function

of an RPG characterized by correlated equilibria is bounded below by the optimal

objective function when it is characterized by Nash equilibria.

However, the practical difficulty of utilizing a correlated equilibrium in this context

is that a regulator must signal publicly utilizing the distribution listed in Table 10,

and a realization of this signal may induce interference. By doing so, the government

is able to increase the probability of an interference-free election but at the expense of

accepting that some persuader interference may occur. Politically, such an admission

is problematic, yet should some regulating government find itself in a position of

insurmountable vulnerability, such a solution may be acceptable, and the political

effects can be potentially mitigated by signaling through ambiguous and/or conflicting

statements.

As with the Nash equilibrium RPG, the solution generated by solving the corre-

lated equilibrium RPG yields second-order effects on the election’s outcome. These

effects are similar to those found under the Nash equilibrium concept, but they gen-

erally exhibit less uncertainty. That is, the probability of a candidate’s mode position

from the Nash equilibrium RPG occurring increases across all candidate by reducing

the probability of other outcomes (e.g., the probability of Candidate 2 finishing in

first place increases from 0.60 to 0.785 by reducing the probability of a second and

fourth place finish from 0.212 and 0.194 to 0.132 and 0.082, respectively). Likewise,
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when comparing the expected election results under the correlated equilibrium to

the results under the government’s preferred persuader action profile of collectively

legal activity, there are only mild differences with regard to candidate ordering (i.e.,

the tie between Candidates 1 and 3 is broken in favor of Candidate 1). Such minor

consequences are promising in that they indicate the government’s regulating action

can be expected to produce minimal second-order effects on the electoral outcome.

Figure 13. Distributions of Finishes under Optimal Correlated Equilibrium RPG

Boundedly Rational Persuaders: Cognitive Hierarchy.

In modeling the bounded rationality of Entities 1–3, a value of τ̂=1.5 is utilized

(Camerer et al., 2004), and this value is assumed to be static for demonstrative

simplicity. As with the analysis under perfect rationality, we first consider the PG

depicted in Figure 11. The resulting cognitive hierarchy solution profile can be seen

in Table 11.

The cognitive hierarchy solution provides an expected distribution of selected

strategies provided the mean-level of thinking depth coincides with τ . The resulting

94



www.manaraa.com

Table 11. Election Inference PG - Cognitive Hierarchy Solution

Sp Strategy Profiles
S1 (0.599, 0.325, 0.074)
S2 (0.850, 0.074, 0.074)
S3 (0.409, 0.074, 0.516)

behavior for the sanction-free PG is unique when compared to the Nash equilibrium

and correlated equilibrium variants. That is, in the cognitive hierarchy PG there

exists a probability, albeit remote, of 0.0028 that all entities engage in legal activity,

and there is a probability of 0.96 that at least one entity conducts an onslaught

interference campaign. Conversely, the Nash equilibrium and correlated equilibrium

PGs conclude that an onslaught campaign will occur with certainty. Setting these

differences aside, the cognitive hierarchy PG still demonstrates a high probability of

interference and, as such, the deterring effect of sanctions should be explored.

Table 12. Election Inference RPG - Cognitive Hierarchy Solutions

Sp Discrete B Continuous B
S1 (0.111, 0.184, 0.705) (0.111, 0.184, 0.705)
S2 (0.075, 0.075, 0.850) (0.075, 0.075, 0.850)
S3 (0.075, 0.075, 0.850) (0.075, 0.075, 0.850)

The resulting optimal solutions for both discrete and continuous B are presented

in Table 12 wherein b1 = b2 =$60M . As with the correlated equilibrium RPG, these

solutions coincide for the cognitive hierarchy RPG.

Under this solution, the regulator’s objective function value increases to −2.43

and, similar to the other RPGs examined, the optimal solution of the cognitive hier-

archy RPG necessitates sanctions near the upper end of their feasible regions. The op-

timal sanction values also coincide with the correlated equilibrium solution; however,

the resulting behavior these sanctions induce is different. In the cognitive hierarchy

RPG, these sanction values induce collectively law-abiding behavior in the persuaders

with probability 0.509, and the probability that at least one entity engages in an on-
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slaught campaign is 0.236. These results stand in contrast to the optimal correlated

equilibrium RPG solution wherein the same sanction values induced probabilities of

0.659 and 0.132, respectively. Moreover, the cognitive hierarchy model produces the

most pessimistic results regarding the possibility of all entities acting in accordance

with the law, but project a higher value of the government’s expected utility than

the optimistic-Nash equilibrium RPG solution.

Figure 14. Distributions of Finishes under Optimal Cognitive Hierarchy RPG

With regard to the electoral outcome, the cognitive hierarchy RPG provides re-

sults that are more uncertain than the correlated equilibrium RPG and, depending

on the specific candidate, are either more or less uncertain than the Nash equilib-

rium RPG. This outcome can be observed by noting the differences in the ordinal

finish-related mode for all candidates between Figures 14, and either Figures 12 or

13. That is, the probability of the mode value occurring for all candidates is lower

in the cognitive hierarchy RPG than the correlated equilibrium RPG; whereas, for

Candidates 1 and 2, the cognitive hierarchy RPG solution yields a higher probability

of the mode value than the Nash equilibrium RPG solution and a lower probability
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for the remaining candidates. Moreover, when comparing the expected ordering of

candidates in the cognitive hierarchy RPG, more differences are observed with respect

to the government’s preferred persuader action profile of collective legal activity than

for the other two RPG solutions. The expected winner remains Candidate 2, but

more drastic changes occur in the overall ordering of candidates (e.g., Candidate 8

has a mean finish of fourth place instead of sixth).

Uncertainty in the Prospect Game Payoff Structure.

Depending on the regulator’s level of confidence in the point estimates utilized

in the previous analyses (i.e., the decisionmakers’ perceptions of the prospects and

their CPT parameters), the regulator may wish to consider PGs and RPGs under

differing assumptions. We illustrate the type of information that can be garnered

via a suitable approach for this uncertainty by utilizing additional information from

Table 7.

For a given set of input parameters, the models developed herein are determin-

istic. When considering parametric distributions, the regulator can gain insight into

system behavior by sampling a sufficiently large set of the requisite parameters and

analyzing each of the resulting PGs and RPGs. Space-filling designs are a particu-

larly useful tool for such endeavors; however, for demonstrative clarity, we illustrate a

regulator examining ten plausible scenarios generated randomly from the underlying

distributions.

For each of these ten scenarios, the analyses conducted in Section 3.4–3.4 are

repeated. Table 13 reports the results for each of four solution concepts: the Nash

equilibrium (NE), alternatively under optimistic (O) and pessimistic (P) perspectives,

the correlated equilibrium (CE), and cognitive hierarchy (CH). For each solution

concept and scenario, tabulated are the objective function value and the respective
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probabilities that at least one entity conducts an onslaught campaign or engages in

fringe action.

Table 13. Solutions of PGs for 10 Additional Scenarios

Scenario
Solution Result 1 2 3 4 5 6 7 8 9 10

NE

Objective (O) -5.15 0 -1 -6 3 -7 -7 1 -10 0.33
Prob Onslaught (O) 0.39 0 0 0 0 1 0.5 0 1 0

Prob Fringe (O) 0.93 1 1 1 0 0 1 1 1 0.67
Objective (P) -23 -9 -7 -20 -21 -24 -21 -20 -17.33 -16

Prob Onslaught (P) 1 1 1 1 1 1 1 1 1 1
Prob Fringe (P) 0.5 1 0 1 0 0.5 1 1 1 0

CE
Objective -3.7 0 -1 -2.79 3 -7 -7 1 -4.5 0.6

Prob Onslaught 0.4 0 0 0.054 0 1 0.5 0 0.5 0
Prob Fringe 0.8 1 1 0.51 0 0 1 1 0.5 0.67

CE
Objective -9.2 -8.77 -1.67 -17.17 -5.21 -20.06 -16.02 -9.96 -12.31 -12.03

Prob Onslaught 0.87 0.67 0.21 0.98 0.53 0.99 0.93 0.58 0.92 0.93
Prob Fringe 0.87 0.81 0.58 0.87 0.42 0.58 0.61 0.99 0.58 0.42

Utilizing this information, the regulator can consider conditions under which in-

tervention may be necessary. For instance, Scenario 1 yields a low objective function

value across all solution concepts and results in the least objective function value un-

der the pessimistic Nash solution. Analogous behavior can be observed for Scenarios

4, 7, and 9, implying that this subset of scenarios represent instances for which the

regulator is most vulnerable.

Conversely, Scenario 3 yields a relatively high objective function value across all

solution concepts and results in the greatest objective function value under the pes-

simistic Nash solution. Scenario 2 exhibits similar behavior and, collectively, they

represent the least vulnerable instances for a regulator. However, Scenarios 5, 6, 8

and 10 exhibit no discernible pattern across game theoretic solutions, indicating that

persuader behavior may be less predictable in these scenarios.

For a regulator examining each of the ten corresponding RPGs, Table 14 reports

the optimal sanction values and the resulting persuader behavior for each of the

scenarios and solution concepts. It can be observed that the NE and CE solutions

coincide for the majority of the RPGs. Likewise, for the less vulnerable block of
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RPGs (i.e., Scenarios 2 and 3) and three of the ambiguous RPGs (i.e., Scenarios 5, 8

, and 10), the optimal RPG solution is to not intervene with sanctions. Under these

scenarios, this implies that if the regulator believes the entities are perfectly rational,

inaction is the regulator’s optimal decision.

Table 14. Solutions of RPGs for 10 Additional Scenarios

Scenario
Solution Result 1 2 3 4 5 6 7 8 9 10

NE

b1 0 0 0 0 0 0 56.77 0 58.87 0
b2 50 0 0 50 0 50 21.62 0 0 0

Objective (O) -3 0 -1 0 3 0 -3 1 -8.05 0.33
Prob Onslaught (O) 0 0 0 0 0 0 0 0 0.897 0

Prob Fringe (O) 1 1 1 1 0 0.67 1 1 0.15 0.67
Objective (P) -19 -9 -7 -19 -21 -22 -7.08 -20 -12.59 -16

Prob Onslaught (P) 1 1 1 1 1 1 0.691 1 1 1
Prob Fringe (P) 0 1 0 0 0 1 0 1 1 0

CE

b1 60 0 0 0 0 0 60 0 60 0
b2 26.67 0 0 50 0 50 35 0 42.86 0

Objective -1.83 0 -1 0 3 0 -2.97 1 -0.44 0.6
Prob Onslaught 0 0 0 0 0 0 0.05 0 0.13 0

Prob Fringe 0.71 1 1 1 0 0.67 0.92 1 0.14 0.67

CH

b1 60 60 41.76 46.12 35.79 60 60 60 60 60
b2 42.97 0 0 0.6 9.88 60 48.74 0 60 51.61

Objective -2.4 -2.18 -0.37 -1.86 -0.46 -3.09 -3.83 -1.71 -2.66 -2.36
Prob Onslaught 0.23 0.22 0.21 0.21 0.21 0.28 0.21 0.21 0.28 0.21

Prob Fringe 0.43 0.69 0.21 0.64 0.21 0.40 0.68 0.65 0.26 0.55

Alternatively, the CH solutions suggest a more aggressive approach is required

across all scenarios, even in the less vulnerable Scenarios 2 and 3. This result likely

stems from the fact that the cognitive hierarchy solutions are more conservative than

the optimistic Nash and correlated equilibrium solutions with regard to an entity

enganging in an onslaught campaign. That is, across all scenarios except Scenario 9,

the CH solution predicts a higher probability of one or more entities engaging in such

a campaign. Given the consequences of onslaught campaigns (i.e., see Table 8), this

probabilistic assessment yields lower objective function values for the CH solutions

relative to the other solution concepts.

Finally, across all scenarios and solution concepts (except the optimistic NE and

CE solutions for Scenario 5), the probabilities that at least one entity will attempt
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to interfere in the election is non-zero, even with regulator intervention. Such insight

indicates the regulator should focus efforts on deterring onslaught campaigns with

the knowledge that some fringe activity is likely to persist.

Discussion.

The probability of interference and the expected candidate ordering results from

Sections 3.4–3.4, combined with the behavior observed in Section 3.4, collectively indi-

cate that deterring improper influence for this application with minimal second-order

effects is more difficult when encountering boundedly rational rather than perfectly

rational persuaders.

In Sections 3.4–3.4, each of the RPGs provides similar results with regard to the

optimal sanction values. Each solution identifies that b1 should be set at its upper

bound of $60M , and only the Nash equilibrium RPG solution designates a b2-value

less than $60M .

Should the Nash equilibrium PG be solved with b1=b2=$60M , the government’s

optimistic objective function value decreases to -3.73, yielding a relative optimality

gap of 33%. Its pessimistic objective function value decreases to -9.8 from -9.66

with optimal sanction values (i.e., a 1.4% reduction). Therefore, if the government is

uncertain as to which game theoretic solution concept should be applied, by setting

b1=b2=$60M they may guarantee a quality solution under any of the three solution

constructs examined.

Conversely, if the regulator is not confident in the point estimates utilized to

predict decisionmaker behavior in Sections 3.4–3.4, the results of Section 3.4 provide

a method for continued analysis. PGs and RPGs do not provide definitive answers

under uncertain information, but can inform decision making by exploring alternative

scenarios. Likewise, their use in such settings can help identify candidate solutions

100



www.manaraa.com

which can be further analyzed using other robust techniques.

3.5 Conclusions

In this research, we defined two new game theoretic frameworks, prospect games

and regulated prospect games, designed to inform defensive national security action

when multiple adversaries target a nation’s citizenry and attempt to influence their

decisions. Prospect games and regulated prospect games respectively model (a) the

interactions of competing persuaders affecting a populace and (b) the actions of a reg-

ulating agent to alter such a framework. Such games may take many forms, depend-

ing on the nature of persuaders’ interactions and assumptions about their rationality.

Thus, their general forms were presented, in addition to the illustrated instantiation

of three special cases concerning the Nash equilibrium, correlated equilibrium, and

cognitive hierarchy solution concepts. Furthermore, the utility of these games to in-

form regulatory decisions was illustrated for a contemporary application concerning

the deterrence of improper electoral interference.

In the models set forth herein, we require the decisionmakers’ available prospects

and methods of evaluation to be common knowledge. As such, they are most useful

in situations wherein decisionmaker behavior is well-studied (e.g., elections or com-

merce). Promising areas for future research pertain to the relaxation of the common

knowledge assumption and a more sophisticated treatment of uncertainty. Whereas

this relaxation would allow for the solution of scenarios wherein the requisite infor-

mation is incomplete, the problem reductions illustrated herein may no longer be

applicable, and the games would need to be solved via some alternative game the-

oretic (e.g., Harsanyi, 1967; Aghassi and Bertsimas, 2006) or simulation-based (e.g.,

Lempert et al., 2006) technique. Moreover, other promising areas of future inquiry

pertain to relaxing the assumption of a countable persuader action space and the
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utilization of alternative, scenario-specific theories of descriptive choice.

Prospect games and regulated prospect games are, ultimately, designed to be

decision support tools for regulating the activity of agents in an economy based upon

persuasion. As such, there exists a wide array of potential application areas for

which they can be utilized in commercial (e.g., Castañeda and Martinelli, 2018),

international political (e.g., Pamp et al., 2018), and domestic regulatory (e.g., Fedeli

et al., 2018; Brandt and Svendsen, 2018) settings. However, for the potential of

these models to be realized, future research must attempt to quantify the effects of

persuasive activity on a decisionmaker’s CPT-parameters, and their subjective utility

and probability estimates. In the interim, prospect games and regulated prospect

games provide a rigorous and quantifiable framework upon which regulation can be

constructed.
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IV. Robust Influence Modeling under Structural and
Parametric Uncertainty: An Afghan Counternarcotics Use

Case

Abstract

An entity often wishes to influence the decisions of others in a system. This dy-

namic is apparent in a variety of settings including criminal justice, environmental

regulation, and marketing applications. However, the central task of the influencing

entity is confounded by uncertainty regarding their understanding of the structure

and/or parameters of the decisions being made. The research herein sets forth a

modeling framework to identify robust influence strategies under such uncertain con-

ditions. Furthermore, the utility of this framework and its proper parameterization

are illustrated via an application to the contemporary, global problem of the Afghan

opium trade. Utilizing open source data, we demonstrate how counternarcotic pol-

icy can be informed using a quantitative analysis that embraces both the bounded

rationality of the economy’s decisionmakers and the government’s uncertainty re-

garding the degree of this deviation from rationality. In this manner, we provide a

new framework with which robust influence decisions can be identified under realistic

information conditions, and we discuss how it can be used to inform real-world policy.

4.1 Introduction

Persuading an individual to adopt a given decision among a set of alternatives

is an inherently difficult task. It requires a level of empathy to understand their

full decision framework that may be difficult to achieve. In designing an influence

strategy, a persuader must infer the answer to many questions: What other alternative

prospects does the decisionmaker perceive? How does the decisionmaker evaluate this

103



www.manaraa.com

set of prospects? How does the decisionmaker value each respective outcome? How

does the decisionmaker understand the uncertainty giving rise to these outcomes? In

what way will an influence action affect the decisionmaker and their perceptions?

The answers to such questions can be inferred via human-subject testing. How-

ever, the data collection requirements to do so with high confidence can be substantial,

and the resulting statistical insights are likely only relevant to a specific context. If

automated data collection efforts are suitable or if the underlying decision setting

is predictable, such difficulties are less problematic; whereas the data collection re-

quirements do not lessen, their assembly is facilitated. As the body of knowledge for

applying statistical or machine learning techniques grows to answer the aforemen-

tioned questions, existent literature (i.e., Caballero et al., 2018) describes how an

optimal influence strategy can be determined.

Unfortunately, there exist many situations for which automated data collection

efforts are infeasible, or wherein the underlying decisionmaking setting is less pre-

dictable. If either of these conditions hold, then direct application of the models

described by Caballero et al. (2018) is not possible; the parameter values required to

formulate their persuasion programs are unknown. However, if bounded intervals for

each these unknown parameters can be identified (i.e., an uncertainty set), alterna-

tive methods can be developed to generate robust influence actions that meet some

threshold of performance regardless of the true parameter values. This research sets

forth such a methodology by leveraging the models of Caballero et al. (2018) within

the Robust Decision Making (RDM) framework set forth by Lempert et al. (2006),

after which it demonstrates the methodology for a realistic use case.

The use case focuses on an application to a contemporary economic and national

security problem: reducing supply for the Afghan opium poppy trade. This ob-

jective is part of an enduring counternarcotics effort in Afghanistan. The Afghan
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illicit opium economy has long been suspected to be a primary revenue stream for

the Taliban insurgency (SIGAR, 2018b), but development of a successful strategy

against it has proven elusive (SIGAR, 2018a). To aid policy development, multiple

economists have quantitatively modeled the effects of counternarcotic actions (e.g.,

Moreno-Sanchez et al., 2002; Clemens, 2008; Mejia and Restrepo, 2016); however,

such models generally rely on equilibrium analysis that implicitly suggests the ra-

tionality of decisionmakers in the illicit economy. This research takes an alternative

approach by considering the effect of counternarcotic strategies in a decision analytic

instead of a game theoretic framework. By doing so, we demonstrate how a better

understanding of a counternarcotic strategy’s effect can be gained by embracing the

bounded rationality of the illicit economy’s decisionmakers and by acknowledging the

associated uncertainty regarding their degree of departure from rationality.

The remainder of this chapter is structured as follows. Section 4.2 reviews the

influence modeling paradigm, discusses the RDM framework, and introduces how the

concepts can be leveraged jointly to inform influence actions under parametric and/or

structural uncertainty. Section 4.3 illustrates the utility of our methodology via its

application to the reduction of Afghan poppy cultivation in the Badakhshan province.

Through this representative case study, we illustrate how policy decisions regarding

influence can be quantitatively informed via our methodology. Finally, Section 4.4

discusses the implications of this research and avenues of future inquiry.

4.2 Robust Decision Making and Influence Modeling

The persuasion programs set forth by Caballero et al. (2018) pertain to the optimal

manipulation of decision trees (e.g., see Figure 15). In a two-stage process, a persuader

starts by influencing how a decisionmaker (or set of decisionmakers) perceives the

underlying risk or uncertainty, values the payoff associated with each outcome, and/or
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evaluates the available set of prospects. After this persuader action has been taken,

the decisionmaker(s) selects a preferred prospect.

Figure 15. Example Decision Tree between Course of Actions (COAs) 1 and 2

Influence actions achieving such effects can take many forms. For instance, an

appeal to the representativeness heuristic could alter subjective probabilities (Kahne-

man and Tversky, 1972), alternative frames could affect payoff valuations (Tversky

and Kahneman, 1981), or emotional appeals could affect a decisionmaker’s risk atti-

tude (Kugler et al., 2012). Other examples, in addition to a survey on the literature

supporting such effects, are discussed in greater detail by Caballero et al. (2018).

Whereas the nature of the influence actions are assumed to be instance-specific,

Caballero et al. (2018) describe their effects within the Cumulative Prospect Theory

(CPT) framework (Tversky and Kahneman, 1992). CPT is an empirically-validated,

descriptive theory of choice wherein an individual’s decision is described by utility

valuations from a reference point; concave and convex utility for gains and losses, re-

spectively; loss aversion; and systematic weighting of probabilistic information. More

formally, consider a prospect f having n gain outcomes and m loss outcomes, respec-

tively indexed as 1 through n and -m through -1. Each outcome value xk measured

from the reference point is evaluated relatively via CPT as
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V (f) = V +(f) + V −(f),where (31a)

V +(f) =

n∑
k=1

π+
k v(xk), (31b)

V −(f) =

0∑
k=−m

π−k v(xk), (31c)

π+
n = W+(An), (31d)

π−−m = W+(A−m), (31e)

π+
k = W+(Ak ∪ ... ∪An)−W+(Ak+1 ∪ ... ∪An), 0 ≤ k ≤ n− 1 (31f)

π−k = W+(A−m ∪ ... ∪Ak)−W+(A−m,∪... ∪Ak−1), 1−m ≤ k ≤ 0, (31g)

wherein v(·) is a piecewise utility function concave for gains and convex for losses; W+

and W− are the event (outcome) weighting functions for gains and losses, respectively;

and π+ and π− are the decision weights utilized to determine the respective component

gains, V +(f), and component losses, V −(f).

The goal of a persuasion program is to maximize the number of decisionmak-

ers selecting some preferred course of action by altering (1) the xk-values, (2) the

uncertainty associated with event Ak, and/or (3) the specific forms of the W±(·)

or v(·) functions. Accurately formulating a persuasion program requires a firm un-

derstanding of the structure of the decision tree, the baseline parameters (e.g., the

decisionmaker’s judged probabilities in the absence of influence), and how the per-

suader’s action will alter the decisionmaker and their perceptions. Human subject

testing (e.g. Booij et al., 2010; Campos-Vazquez and Cuilty, 2014; Schulreich et al.,

2014) is one potential method to gain this understanding but, for a variety of reasons,

it is not always practical and may not be feasible. Without these baseline parameters,

a persuasion program cannot be utilized directly.

However, if uncertainty sets (or collections) can be identified for each unknown
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factor, a robust influence strategy can be identified. Whereas the application of robust

optimization is the intuitive approach to do so, herein we illustrate how the RDM

framework set forth by Lempert et al. (2006) is preferable because of its flexibility.

Robust Decision Making.

RDM is an iterative decision analytic framework utilized in conditions of deep

uncertainty. Deep uncertainty describes situations for which analysts cannot agree

upon how to model the interaction of system variables, the underlying uncertainty, or

the desirability of outcomes. RDM addresses these conditions by leveraging modern

computer simulation, space-filling designs, and clustering algorithms.

To conduct an RDM analysis, it is necessary to identify the sets of available

strategies, ~S, and the future states of the world, ~F . The objective of RDM is to select

some s ∈ ~S that performs well across any future state of the world in ~F . Lempert

et al. (2006) propose the following five step iterative process to apply RDM: identify

initial candidate robust strategies, identify vulnerabilities, suggest hedges against

vulnerabilities, characterize deep uncertainties and trade-offs among strategies, and

consider improved hedging options and surprises.

In practice, these steps consist of building a database ~E = ~S× ~F (i.e., the futures

ensemble) with some robustness metric assigned to each strategy-future combination.

A candidate strategy scand is then selected, and a subset of future states in ~F for

which scand performs poorly is identified via clustering analysis. The next step is to

determine alternative strategies less vulnerable to these future states but comparable

to scand elsewhere, and select a new candidate strategy. This process is iteratively

repeated until an acceptable course of action has been identified. After each round,

there exists the potential to augment ~E with more strategies or future states of the

world as required.
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Therefore, RDM requires ~F to be a finite set. To account for this characteristic

while accommodating situations wherein the set of plausible futures is excessively

large (or infinite, as when defined on continuous domains of characteristic variables),

a finitely-valued but adequately representative set ~F can be generated via a space-

filling design of the region. Numerous space-filling designs exists and provide various

guarantees on how well the set of future states is explored.

Likewise, the effect obtained by utilizing some s ∈ ~S given a potential future state

is determined by a scenario generator (i.e., a computer simulation). The use of a

scenario generator, in combination with the set ~F , allows for the modeling of various

system variable interactions and their effect on system performance.

The raw values provided by the scenario generator are not the object of RDM

analysis. Instead comparisons are made across strategies using some measure of

robustness. Many alternatives measures exist (e.g., absolute or relative regret), but

the specific selection must ultimately be made in accordance with the problem setting

(Roy, 2010). For example, if the degree of variation from the best-case is important,

absolute measures may be appropriate. Alternatively, relative measures of robustness

(or regret) can help highlight systematic differences. Likewise, the evaluation criteria

utilized to distinguish across scenarios (e.g., minimize maximum regret, minimize

expected regret, or minimize upper quartile regret) are also problem specific.

The conceptual steps in an RDM analysis are static. However, the space-filling

design utilized to sample the true set of futures is contingent upon the underlying

uncertainties. If all uncertainty sets are connected, then standard space-filling designs

(e.g., a Latin hypercube) can be utilized; otherwise, less traditional designs capable

of incorporating categorical variables (e.g., fast flexible designs) may be required.

In either situation, multiple design candidates exists. Analysts must be cognizant

that this design selection, in addition to the particular clustering analysis utilized to
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identify vulnerabilities, may affect the final proposed strategy.

An RDM Approach to Influence.

In most influence settings, a persuader cannot be certain of many pertinent factors

in the decision setting. The persuader can infer the prospects a decisionmaker(s) is

considering but likely does not know these with certainty. Whereas the persuader

confronts similar uncertainty with respect to a decisionmaker’s judged probabilities,

outcome valuations, risk attitude, loss aversion, etc., it is likely that the persuader can

bounded these factors within some range and subsequently apply the RDM framework

to an influence setting.

As in Caballero et al. (2018), herein we assume a persuader is attempting to

influence a set of decisionmakers, I, to each select some prospect under conditions of

risk. The set of available influence strategies1, ~S, is known to the persuader. Each

decisionmaker i faces a finite set of prospects Ji such that each j ∈ Ji has a finite

set of associated, uncertain outcomes, Kij. That is, each decisionmaker is confronted

with a decision tree akin to that depicted in Figure 15. The persuader is uncertain

of the specific structural form of these decision trees, but we assume a persuader is

able to infer a finite collection of decision trees such that each decisionmaker’s true

decision tree aligns with one of them. More formally, the persuader can identify the

following uncertainty collections and uncertainty sets:

1Caballero et al. (2018) describe this set as A, but herein we maintain consistency of notation
with Lempert et al. (2006)
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Decision Tree Uncertainty Collections

Ji : A finite collection of prospect sets for decisionmaker i, one of which

is the true Ji

Kij : A finite collection of outcome sets for decisionmaker i and prospect j,

one of which is the true Kij

Decision Tree Uncertainty Sets

Ŷijk : Set of baseline raw values (ŷijk) for the kth event of prospect j

for decisionmaker i

P̂ijk : Set of baseline probabilities (p̂ijk) for the kth event of prospect j

for decisionmaker i

These uncertainty collections and sets describe all potential decision trees the

persuader believes the decisionmakers could consider. However, the manner in which

the decisionmakers evaluate the decision trees is also a source of uncertainty, as is

the effect of a persuader’s influence action on both this evaluation and the decision

trees themselves. Assuming the probability weighting functions and utility functions

from Tversky and Kahneman (1992) are utilized (i.e., equations (32a)–(32c)), these

sources of uncertainty can be described via the following uncertainty sets2.

2We note that alternative probability weighting functions (e.g., Prelec, 1998) or utility functions
(e.g., Wakker, 2010) can be substituted with relatively minor notational changes.
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Decisionmaker Uncertainty Sets

Γ̂i : Set of baseline gain probability weighting coefficients (γ̂i)

for decisionmaker i

D̂i : Set of baseline loss probability weighting coefficients (δ̂i)

for decisionmaker i

Âi : Set of baseline gain utility coefficients (α̂i) for decisionmaker i

B̂i : Set of baseline loss utility coefficients (β̂i) for decisionmaker i

Λ̂i : Set of baseline loss aversion (λ̂i) coefficients for decisionmaker i

R̂i : Set of baseline reference points (r̂i) for decisionmaker i

Influence Effect Uncertainty Sets

Fijk(s) : Set of influence effect mappings (fijk(s)) on the baseline raw

value for the kth event of prospect j for decisionmaker i

Gijk(s) : Set of influence effect mappings (gijk(s)) on the baseline

probability for the kth event of prospect j for decisionmaker i

Hθ
i : Set of influence effect mappings (hθi (s)) altering decisionmaker

i’s baseline CPT-parameter θ̂ to θ, θ ∈ {γi, δi, αi, βi, λi, ri}

Moreover, this framework is also applicable to conditions of ambiguity per the

results of Fox and Tversky (1998); however, select modifications are necessary to

align the decision tree uncertainty sets with the tenets of Support Theory. That

is, for each Kij, an associated collection of sets Cij must be introduced, and the
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uncertainty set P̂ijk must be replaced with P̂ijΩu , respectively defined as follows:

Cij : Set of all non-empty subsets Ωu ⊆ Kij,

P̂ijΩu : Set of all baseline probabilities (p̂ijΩu) of event disjunction Ωu in

prospect j by decisionmaker i.

Conceptually, the decision tree uncertainty collections (i.e., Ji and Kij) describe the

structural uncertainty, and the remaining uncertainty sets describe the parametric

uncertainty. Collectively, they also constitute all known potential future states of the

system. To ensure flexibility, we have left their form general; however, when discern-

ing how to describe ~F , the specific properties of each uncertainty is paramount. If

all of the aforementioned collections are countable, then ~F could potentially be taken

via their enumeration. Otherwise, varying forms of space-filling designs should be

considered to form ~F . If Ji or Kij has a cardinality greater than 1, then standard

space-filling designs such as the Latin hypercube are not applicable. From the per-

spective of experimental design, each possible Ji or Kij is a categorical factor level.

Therefore, alternative designs such as a sliced Latin hypercube (Qian, 2012; Ba et al.,

2015) should be considered. Other complicating factors restricting which space-filling

designs can be utilized relate to the probabilistic nature of the uncertainty. When

influencing a decisionmaker under risk, the axioms of probabilities must be satisfied,

implying that the underlying design space is constrained. In such instances, the fast

flexible design by Lekivetz and Jones (2015) is an attractive alternative.

Once ~F has been determined, the value of each element in the futures ensemble ~E

can be identified utilizing the scenario generator. In modeling influence, the scenario

generator consists of a relatively direct application of CPT. Because each element of

~E considers a particular future, a specific element of each aforementioned uncertainty
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collections or sets is provided. In turn, each decision tree and its respective deci-

sionmaker’s evaluation calculus is fully specified in its post influence state. As such,

once the outcomes for each prospect have been sorted and partitioned into gains and

losses, equations (31a)–(31g) can be applied to determine which prospect decision-

maker i prefers. More formally, for each decisionmaker i and a specified set of available

prospects and associated outcomes (i.e., Ji ∈ Ji and Kij ∈ Kij), a set of outcome

values and judged probabilities (i.e., yijk and pijk), and a tuple of CPT-parameters

(γi, δi, αi, βi, λi, ri) is defined by

yijk = ŷijk + fijk(s), ∀i ∈ I, j ∈ Ji, k ∈ Kij,

xijk = yijk − ri, ∀i ∈ I, j ∈ Ji, k ∈ Kij,

pijk = p̂ijk + gijk(s), ∀i ∈ I, j ∈ Ji, k ∈ Kij,

θi = θ̂i + hθi (s), ∀i ∈ I, θ = {γi, δi, αi, βi, λi, ri},

and

W+(pijk) =
(pijk)

γi(
(pijk)γi + (1− pijk)γi

)γ−1
i

, (32a)

W−(pijk) =
(pijk)

δi(
(pijk)δi + (1− pijk)δi

)δ−1
i

, (32b)

v(xijk) =


(xijk)

αi , xijk ≥ 0

−λi(xijk)βi , xijk < 0.

(32c)

These values are utilized in equations (31a)-(31g) to determine which prospect has

the maximum value and is preferred by the decisionmaker.
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The persuader’s utility is in turn affected by the collective choices of the deci-

sionmakers. It may be the case that, for each decisionmaker and prospect set Ji, the

persuader prefers the decisionmaker to select some prospect q(Ji), in a binary manner

analogous to Caballero et al. (2018), or the persuader may value the decisionmaker’s

selection along some continuum. Therefore, the selection of this scenario generator

measure is ultimately instance specific and depends upon the persuader’s goal for

the system. The persuader also must determine whether the successful influence of a

plurality of decisionmakers is preferred or, conversely, if each decisionmaker’s choice

is weighted differently.

This selection of a scenario generator measure, in addition to the chosen robust-

ness measure, evaluation criteria, and clustering algorithm are RDM tailorable com-

ponents. Each must be selected in accordance with the persuader’s needs and, real-

istically, software availability. As with RDM in a generic setting, the selection of the

robustness measure and an evaluation criteria must be informed by the persuader’s

objective. For example, if deviations in natural units from optimal solutions in fu-

ture states are important, then the use of expected absolute regret is a well-suited

robustness measure. However, such an objective does allow for outliers to influence

a decision and a persuader may alternatively seek to minimize the expected relative

regret if this property is undesirable.

4.3 Case Study: Influencing Landowning Household Crop Choice in Badakhshan

Province

Since the 1980s, opium poppy cultivation has steadily increased in Afghanistan

(Ward and Byrd, 2004). Production soared when the Taliban took control in 1996

(Woody, 2018a), and today it has become an integral part of the rural Afghan econ-

omy (Byrd, 2017). In an unsecure and volatile environment, opium poppy cultivation
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is an appealing choice for Afghan farmers due to its high selling price, long shelf life,

and profitable byproducts that can be used for, e.g., heating and livestock feed (Mans-

field and Fishstein, 2016). The extent of poppy production is so vast that Afghanistan

has become the world’s largest producer (Woody, 2017, 2018a). Likewise, the opium

sector as a whole, including the licit and illicit activities it supports, is a major source

of revenue for the country; some experts estimate drugs constitute between a third

and a half of the overall Afghan economy (Felbab-Brown, 2016).

While the extent of opium poppy’s effect on counterinsurgency is contested (Mans-

field, 2018), much of the revenue associated with its trade is suspected to support the

Taliban (SIGAR, 2018b). For this reason, counternarcotics and counterinsurgency

have often been viewed as complementary campaigns by the United States. Unfortu-

nately, no policy enacted over the course of the conflict has been able to meaningfully

cripple the Afghan opium economy (SIGAR, 2018a). These failures are often at-

tributed to a policy’s poor underpinnings to economic, social and cultural realities

(Mansfield and Fishstein, 2016). Whereas strategies considering such factors have

long been advocated by Afghan experts (e.g., Ward and Byrd, 2004; Ward et al.,

2008), the implementation of an effective counternarcotics policy has proven elusive

(SIGAR, 2018a).

In this section, we illustrate how our modeling paradigm can be used to formu-

late policy informed by socio-economic realities and aimed at achieving a portion

of the larger counternarcotics objective. Utilizing a variety of open source data, we

formulate and solve a representative use case aimed at deterring the farmers in the

northeastern province Badakhshan (Figure 16) from engaging in poppy cultivation.

We model this province because it has witnessed high levels of poppy cultivation

in areas under government control (UNODC, 2018a) and, as discussed by SIGAR

(2018a), a counternarcotic strategy requires such control to be effective.
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Figure 16. Badakhshan Province, Afghanistan

Seasonal Crop Decision by Badakhshan Landowners.

In this section, we illustrate how the structure of a farmer’s decision regarding

what crop to plant and cultivate in a given season can be inferred. Although we

utilize a variety of open source data over a variable time frame to inform this use

case, an official policy development would be best served with recent data, tailored

to the specific area of interest. As such, what follows is a representation of influence

modeling under structural and parametric uncertainty. It is not meant to promote a

specific policy, but instead to demonstrate the utility of the proposed methodology.

Landowners in Afghanistan generally have small holdings (UNODC, 2003). The

same observation holds in the province of Badakhshan (Pain, 2010). The Central

Statistics Organization of Afghanistan (2013) categorized Badakhshan farmers into

three demographics: irrigated, rain-fed, and garden-plot farmers. On average, individ-

ual members of these groups own 4.2 jeribs (0.84 hectare), 6.4 jeribs (1.28 hectares),

and 1.1 jeribs (0.22 hectares) of land, respectively (Central Statistics Organization of

Afghanistan, 2013). Likewise, each demographic respectively constitutes 36%, 45%,

and 19% of the 135,000 landowning households in the province (Central Statistics

117



www.manaraa.com

Organization of Afghanistan, 2013). The irrigated farmer demographic can be fur-

ther subdivided based upon their irrigation system. A variety of irrigation systems

are used in Afghanistan, including shallow wells known as arhads and man-made

underground channels from aquifers known as karizs. Both of these systems are

drought-resistant; however, other more vulnerable systems based on rivers, springs,

and snow-melt also exist (Qureshi, 2002). With this understanding, the irrigated

farmer demographic can be subdivided into drought-resistant irrigated (DRI), and

drought-vulnerable irrigated (DVI) farmers. According to the Central Statistics Or-

ganization of Afghanistan (2007), between 35% and 45% of Badakhshan irrigated

farmers have drought-resistant systems, compared to the Afghanistan-wide estimate

of 24% (Central Statistics Organization of Afghanistan, 2018). Therefore, in this case

study we model a “representative” decisionmaker from each of the four demographics.

That is,

I = {DRI, DVI, RF, GP}.

The relative distribution of each demographic is assumed to be 13%, 23%, 45%,

and 19% of the total landowning population in Badakhshan in accordance with

lower bound drought-resistant estimate provided by Central Statistics Organization

of Afghanistan (2007). Likewise, we henceforth assume both rain-fed and garden-plot

farmers are vulnerable to drought conditions, and that a representative farmer from

each demographic owns the aforementioned average landholdings.

The crops available to Badakhshan farmers vary by district. However, there are a

few staple options (i.e., potato, wheat, and opium poppies) that are grown in every

district, excluding Shiki (Central Statistics Organization of Afghanistan, 2007). Other

options such as onions, tomatoes, and maize are also widely cultivated. Ideally, the
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influence model would consider all crop combination considerations; however, due

to open source data availability and the purpose of illustrating the RDM modeling

and solution methodologies, we limit the crops available to farmers as a combination

between wheat, potatoes, tomatoes, and opium poppies. To build Ji, we note that

according to the Central Statistics Organization of Afghanistan (2018), the majority

of Afghan households cultivate one or two crops, and a minority plant up to three.

We assume each farmer demographic i has the option to cultivate their land as one

of the elements in the set Ji defined in equation (33).

Ji =



Plant Opium Poppies (100% of land)

Plant Wheat (100% of land)

Plant Crop X (100% of land)

Plant Opium Poppies, Wheat (50%, 50% of land each)

Plant Opium Poppies, Wheat (25%, 75% of land)

Plant Opium Poppies, Wheat (75%, 25% of land)

...

Plant Opium, Wheat, Crop X (33% of land each)

Plant Opium, Wheat, Crop X (50%, 25%, 25% of land)

Plant Opium, Wheat, Crop X (25%, 50%, 25% of land)

Plant Opium, Wheat, Crop X (25%, 25%, 50% of land).



(33)

By the definition of Ji, we assume a representative basket of available options for each

demographic includes three crops. Due to their widespread cultivation, we assume

opium poppies and wheat are part of this basket. However, we allow for uncertainty in

the third crop option (i.e., Crop X) which can be either potatoes or tomatoes. The un-

certainty collection Ji therefore has a cardinality of two for each farmer demographic
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i, wherein the definition in equation (33) is repeated for both possibilities of Crop X.

Moreover, due to the small acreage of landholdings, we assume that the allocation

strategies of 50-50 percent or 25-75 percent when planting two crops, and 33-33-33

percent or 50-25-25 percent when planting three crops are sufficient to approximate

actual behavior, providing 16 available prospects. Further behavioral experimenta-

tion could be considered to ascertain how the CPT-editing phase affects Ji to reduce

its size, but we refrain from doing so for this case study.

For this illustration, we assume a farmer considers two underlying uncertainties

that affect their crop yield, and that for any decisionmaker i and prospect j, Kij is a

singleton collection composed of the uncertainties defined in either equation (34) or

(35). The amount of rainfall in a given season is a primary concern, and, if planting

poppy, so is the possibility of an eradication raid by the government. Therefore, the

uncertainty associated with a planting decision including poppy is

Kij =



Ample Rainfall, No Raid

Drought, No Raid

Ample Rainfall, Raid

Drought, Raid


, (34)

and the uncertainty associated with a planting decision excluding poppy is

Kij =

Ample Rainfall

Drought

 . (35)

Having defined the decisionmakers and the decision tree uncertainty collections,

the general form of each farmer’s crop selection decision is depicted in Figure 17.
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Figure 17. Generic Badakhshan Farmer Decision Tree
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We introduce the following alternative notation to improve readability of this use

case. The payoff (i.e., net income) associated with each prospect-outcome combi-

nation before influence (i.e., ŷijk) can also be denoted as ŷi(% poppy, % wheat, %

crop X, Rainfall Outcome, Raid Outcome). In the associated tuple, the first three

elements describe the selected prospect j, whereas the final two elements describe the

associated uncertain outcome k. A similar notational simplification is implemented

for p̂ijk which can be written as p̂i(% poppy, % wheat, % crop X, Rainfall Outcome,

Raid Outcome).

The uncertainty set Ŷijk is compiled by combining the gross income (e.g., produc-

tion per hectare, farm-gate price, etc.) and cost (e.g., ushr, labor, seed) estimates

by Kuhn (2010) and from drought effects estimated by the UNODC (2018b). Kuhn

(2010) provides net income projections per hectare for a variety of Afghan crops; how-

ever, these estimates were generated under the assumption of ample rainfall, judging

by the coincidence of the poppy yield estimate with the actual yields observed in the

2017 bumper crop season (UNODC, 2018b). As such, the estimates listed by Kuhn

(2010) are used as a baseline for a season with ample rainfall, and they are adjusted

based on observed data from the UNODC (2018b) to obtain net income estimates

in drought seasons. That is, we utilize the UNODC (2018b) data to inform poppy

income estimates and extrapolate the observed trends to other crops. Although this

technique is not ideal for modeling accuracy, we utilize this naive approach due to a

lack of data availability. As such, the resulting uncertainty sets Ŷijk for each demo-

graphic are formed by multiplying the respective lower and upper bounds of jerib net

income by the number of jeribs utilized for each crop based on the given prospect j

and outcome k. The per jerib income values are listed in Table 15. Note that labor

costs are assumed to be static at the rate listed by Kuhn (2010), who does not itemize

the price of irrigation maintenance.
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Table 15. Estimated Per Jerib Net Income Range

Label Farmer Demographic Crop Uncertain Outcome Net Income per Jerib

u1 DRI Poppy A, NR [$442, $1492]
u2 DRI Poppy D, NR [$342, u1 ]
u3 DRI Poppy A/D, R -$270
u4 DRI Wheat A, NR [-$1, $149] ]
u5 DRI Wheat D, NR [-$15, u4 ]
u6 DRI Potato A, NR [$130, $919]
u7 DRI Potato D, NR [$55, u6]
u8 DRI Tomato A, NR [$74, $377]
u9 DRI Tomato D, NR [$45,u8]
u10 DVI Poppy A, NR [$442, $1492]
u11 DVI Poppy D, NR [$202, u10]
u12 DVI Poppy A/D, R -$270
u13 DVI Wheat A, NR [-$1,$149]
u14 DVI Wheat D, NR [-$35, u13]
u15 DVI Potato A, NR [$130, $910]
u16 DVI Potato D, NR [-$50, u15]
u17 DVI Tomato A, NR [$74, $377]
u18 DVI Tomato D, NR [$5, u17]
u19 RF Poppy A, NR [$380, $1430]
u20 RF Poppy D, NR [$140, u19]
u21 RF Poppy A/D, R -$333
u22 RF Wheat A, NR [-$-1, 149]
u23 RF Wheat D, NR [-$35, u22]
u24 RF Potato A, NR [$130, $910]
u25 RF Potato D, NR [-$50, u24]
u26 RF Tomato A, NR [$74, $377]
u27 RF Tomato D, NR [$5, u26]
u28 GP Poppy A, NR [$504, $1554]
u29 GP Poppy D, NR [$264, u28]
u30 GP Poppy A/D, R -$208
u31 GP Wheat A, NR [$26, $177]
u32 GP Wheat D, NR [-$8, u31]
u33 GP Potato A, NR [$174, $964]
u34 GP Potato D, NR [-$6, u33]
u35 GP Tomato A, NR [$117, $421]
u36 GP Tomato D, NR [$48, u35 ]
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The net income estimates per jerib are disparate across demographics. For in-

stance, considering that the average Badakhshan household consists of nine individ-

uals (Nicolle, 2010), and that poppy harvesting is a culturally acceptable activity in

which Afghan women partake (UNODC, 2003), the garden-plot demographic can ac-

commodate labor requirements internally, even during the approximately two week,

labor-demanding poppy harvest. Conversely, rain-fed farmers with larger land hold-

ings are, at times, forced to hire contract labor. Analogous differences can also be

observed in the disparate effects drought is assumed to have on each demographic.

For illustration purposes, we assume farmers make their decisions under condi-

tions of risk. Likewise, since we assume independence between rainfall and poppy

eradication raids, the probability associated with any outcome is simply the product

of the associated rainfall and raid probabilities. A conservative approach is taken

regarding the probability of drought, and it is assumed to be between [0.25, 0.75]. In

accordance with the infrequent poppy eradication raids in Badakhshan in recent years

(UNODC, 2018b), we assume they are viewed as improbable events with a range of

[0.02, 0.05]. As such, for a prospect j with respective acreage allocations aW and aX

for wheat and crop X without poppy cultivation, we have

P̂ijk =

 (p1, p2)

∣∣∣∣∣∣∣∣∣∣
0.25 ≤ p1 ≤ 0.75,

0.25 ≤ p2 ≤ 0.75,

p1 + p2 = 1


where

p1 = p(ample rain) = pi(0, aW , aX ,A,NR), and

p2 = p(drought) = pi(0, aW , aX ,D,NR).
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For a prospect j including poppy cultivation with an acreage percentage aP , we have

P̂ijk =

 (p1, p2, p3, p4)

∣∣∣∣∣∣∣∣∣∣
0.25 ≤ p1 ≤ 0.75, 0.25 ≤ p2 ≤ 0.75,

0.02 ≤ p3 ≤ 0.05, 0.02 ≤ p4 ≤ 0.05

p1 + p2 = 1, p3 + p4 = 1


where

p1 = p(ample rain) = p1,

p2 = p(drought) = 1− p1,

p3 = p(raid),

p4 = p(no raid) = 1− p3,

and

pi(aP , aW , aX ,A,NR) = p1p4,

...

pi(aP , aW , aX ,D,R) = p2p3.

Finally, we turn to our attention to the parameterization of the decisionmaker

uncertainty sets. We leverage the works of Booij and Van de Kuilen (2009), Abdellaoui

(2000), and Abdellaoui et al. (2007) to inform the uncertainty sets associated with the

probability weighting, utility curvature, and loss aversion coefficients, respectively. In

the case of the utility curvature coefficients, the uncertainty sets are taken to be the

range of estimates from the literature provided by Booij and Van de Kuilen (2009),

whereas the experimental results from Abdellaoui (2000); Abdellaoui et al. (2007)
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directly inform the probability weighting and loss aversion uncertainty sets. A more

simplistic approach is taken with the reference point uncertainty set, and it is derived

from Table 15 by the range formed via the product of the minimum and maximin unit

net income values with each demographic’s assumed landholdings. The resulting sets

are quantified in Table 16 wherein Li refers to the assumed size of demographic i’s

landholdings. Of note, demographic decisionmaker uncertainty sets are assumed to

be identical (except for the scale of R̂i) due to the high degree of ambiguity relating

to the manner in which Badakhshan farmers distinguish between prospects. To our

knowledge, no CPT-related studies have been conducted on this population to inform

more accurate model parameters.

Table 16. Decisionmaker Uncertainty Sets

Γ̂i D̂i Âi B̂i Λ̂i R̂I

[0.492, 0.708] [0.588, 0.812] [0.22, 1.01] [0.61, 1.06] [0.74, 8.27] [-333Li, 1554Li]

Influence Actions and their Effects.

In the Afghan conflict, multiple counternarcotic strategies have been attempted.

The influence actions these strategies rely upon can be broadly classified into four

categories (SIGAR, 2018a): eradication, interdiction, alternative development, and

political support mobilization. Eradication efforts focus on the destruction of a stand-

ing poppy crop, whereas interdiction efforts, to include narcotics seizures and the de-

struction of narcotics production facilities, are applied further along the supply chain.

Alternative development programs can be viewed as positive reinforcement relative

to the negative reinforcement of eradication. They are designed to reduce poppy

cultivation by increasing the attractiveness of licit livelihood opportunities. Finally,

political support mobilization is a wide ranging category including public awareness

campaigns and other efforts designed to strengthen Afghan institutions. Herein, we
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assume that the persuader’s task is to select some combination of these four actions

to reduce poppy cultivation in Badakhshan.

The effects of these influence actions is highly dependent of the specific form

of their implementation. For example, the alternative development program in the

Helmand Food Zone (HFZ) which focused on substituting wheat for opium poppy has

been criticized as ineffective and ill-advised (Mansfield and Fishstein, 2016). However,

alternative programs to build an enduring capacity with more profitable crops have

been viewed favorably (SIGAR, 2018a). A similar debate relating to the form of

eradication efforts (e.g., manual vs. aerial spraying) dominated much of the early

stages of the Afghan conflict (Coll, 2019).

For this case study, we adopt a strategic-level perspective and describe how each

influence effort can be expected to affect the decisionmaker and the decision setting.

Eradication campaigns, regardless of their form, target the farmers themselves. As

such, an increase in their intensity will necessarily coincide with an increase in the

probability of a poppy farming raid, and the reduced overall supply will result in in-

creased expected income for successful harvests (Martin and Symansky, 2006). Con-

versely, interdiction efforts have an indirect effect on farmers. By targeting upstream

entities, they serve to reduce the demand observed by the poppy farmers (Martin and

Symansky, 2006) and, in isolation, can be expected to decrease farm-gate values.

The effects of an alternative development program are varied. However, herein

we assume that such programs targeted at potential poppy farmers are designed to

increase the attractiveness of cultivating wheat, potato, or tomato via either reducing

costs or increasing profits. Likewise, the effects of political support mobilization

are diverse, but herein we assume such action is composed of a public awareness

campaign and provincial leader engagement with the following effects. The public

awareness campaign reinforces the criminality of poppy cultivation and underscores
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the financial risks associated with a destroyed crop, whereas the provincial leaders are

encouraged to increase poppy related taxes. As such, political support mobilization

can be expected to increase a farmer’s judged probability of a raid and decrease the

net income associated with poppy.

Table 17. Actions Included (Y) and Excluded (N) in each Influence Strategy

Influence Strategy (scand) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Eradication N Y N N N Y Y Y N N N Y Y Y N Y
Interdiction N N Y N N Y N N Y Y N Y Y N Y Y

Alternative Development N N N Y N N Y N Y N Y Y N Y Y Y
Pol. Sup. Mobilization N N N N Y N N Y N Y Y N Y Y Y Y

All available influence strategies (i.e., ~S) are listed in Table 17. Likewise, the

uncertainty sets for influence effects that account for these dynamics are displayed in

Table 18. For this case study, these uncertainty sets are assumed to be static across

all decisionmakers. Each strategy, if employed, is assumed to have an additive effect

on the associated parameter as listed. For example, for some decisionmaker i and

prospect j (including poppy) wherein outcome k represents the ample rainfall, raid

outcome, we have

Gijk(s2) = [0, 0.7],

pijk = p̂ijk + gijk(s2), gijk(s2) ∈ Gijk(s2).

Moreover, if an influence strategy employs multiple actions simultaneously, the cu-

mulative effect is assumed to be additive. For instance, if influence strategy s8 is

utilized instead of s2 we would have

gijk(s8) = gijk(s2) + gijk(s5), gijk(s1) ∈ Gijk(s2),

gijk(s5) ∈ Gijk(s5),

pijk = p̂ijk + gijk(s8).
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Any entry not listed in Table 18 is assumed to have a null effect. Likewise,in accor-

dance with Table 15, we assume that if a property is raided, the effect is certain (i.e.,

all poppy is destroyed with resulting damages).

Table 18. Influence Effects on Decision Setting

Influence Raid Probability Poppy Income (NR) Wheat Income Potato Income Tomato Income

s2 [0.00, 0.7] [-0.05ŷijk, 0.2ŷijk] - - -
s3 - [-0.15ŷijk, 0.1ŷijk] - - -
s4 - - [-0.25ŷijk, 5.00ŷijk] [-0.25ŷijk, 2.00ŷijk] [-0.25ŷijk, 3.00ŷijk]
s5 [-0.02, 0.05] [-0.2ŷijk, 0.1ŷijk] - - -

In this case study, the numerical effects of influence are considered utilizing uncer-

tainty sets meant to capture conflicting opinions and designed to allow for alternative

effects than those anticipated (e.g., s5 decreasing the raid probability). Such con-

flict is historically characteristic of counternarcotic policy discussions in Afghanistan

(Coll, 2019). Therefore, the notional effects in this case study are designed to be a

representation of the true policy-making environment.

RDM Tailorable Components.

Having defined the uncertainty collections and sets, the next steps in the RDM

approach consist of identifying a space filling design from which to build ~F , a scenario

generator measure, a robustness measure, an evaluation criteria, and a clustering

algorithm.

From an experimental design perspective, we are considering one categorical fac-

tor with two levels (i.e., Ji) and 70 additional continuous factors including each

decisionmaker’s CPT-parameter values, the respective influence’s effects, and each

crop’s profitability. To accommodate this setting, we utilize a sliced Latin hypercube

design because it allows for optimal space-filling properties to be pursued within and

between the categorical factor levels (Ba et al., 2015). The specific design used has

two slices and 1000 points in each slice, yielding a ~F with 2000 futures, and was

129



www.manaraa.com

calculated using the R-package SLHD with the simulated annealing parameter iter-

max set to 20. In this manner, the resulting design matrix has favorable space-filling

properties, and is convenient for calculation and adequate for illustration.

A variety of scenario generator measures could be used depending upon the pre-

cise nature of the persuader’s priorities. For instance, the persuader may wish to

reduce the total number of households cultivating poppy, or may wish to minimize

the total number of jeribs utilized for poppy cultivation. Both fall within the larger

counternarcotics objective, but are alternative metrics of success. Preferably, the se-

lection of such a measure would be informed based upon the specific nature of the

insurgency’s poppy-related income stream. Absent this information, we focus on the

latter scenario generator measure related to minimizing the total number of poppy

cultivated jeribs. In large part, this decision is made to align with the historical

priorities of US and UN policymakers (SIGAR, 2018a; UNODC, 2018a).

Furthermore, absolute regret is utilized as a robustness measure to facilitate com-

munication of results in natural units. The interpretation of this absolute regret

measure is the number of additional poppy cultivated jeribs in a given scenario from

the “optimal”. Moreover, the evaluation criteria selected is expected regret for similar

reasons. The number of poppy cultivated jeribs in Afghanistan has a direct impact on

the worldwide opium supply, and the retention of this conceptually-accessible mean-

ing is important when communicating regret to senior policymakers.

With regard to clustering, Lempert et al. (2008) advocate for the use of two

hierarchical clustering algorithms (i.e., CART and PRIM). The authors argue that

each of these clustering techniques have high interpretability because they segment

the area of interest into hyper-rectangular regions. Empirically, both algorithms are

shown to perform well; however, CART regions are guaranteed to be disjoint whereas

PRIM regions may overlap. For this reason, the CART algorithm is utilized in this
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study. Moreover, to limit the depth of the classification tree, the minimum leaf size

is bounded below by 35 futures in accordance with CART-application conventions.

Analysis and Results.

The result of each influence strategy on the number of jeribs produced for each

future in ~F is depicted in Figure 18. It can be observed that the null strategy (i.e.,

s1) and most influence strategies composed of singleton actions (i.e., s2, s3, s5) result

in a large number of expected poppy cultivated jeribs. Among the non-singleton

strategies, each of the strategies not including alternative development as an action

(e.g., s6, s8, s10, s13) results in many poppy cultivated jeribs as well, indicating the

importance of such actions in a successful influence strategy.

Figure 18. Distribution of Poppy Cultivated Jeribs over all Futures

The amount of variability in poppy cultivated jeribs for most of the strategies

depicted in Figure 18 coincides with the historical difficulties encountered by those

developing counternarcotic policy. Even strategies having the greatest potential ben-

efit may be ineffectual when applied. For instance, if one were to assume all futures

equally likely, s16 results in the lowest number of expected poppy cultivated jeribs

even though instances exist having no decrease in cultivation relative to the null

strategy.
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As such, the raw distributional data on poppy cultivated areas is not sufficient

to determine which of the sixteen considered strategies is robust. We cannot discern

the degree of which a strategy’s favorable futures coincide with that of any other.

Therefore, to continue with the RDM analysis, we introduce the robustness results in

Figure 19.

Figure 19. Distribution of Absolute Regret over all Futures

By observing this figure, we can discriminate better between strategies. Differ-

ences between s12 and s14 emerge based upon the sizes of their interquartile-regret

ranges. A similar observation holds for s7 and s16. Notably, we also see that s7, s12,

s14, and s16 all have an expected absolute regret of zero. However, s14 and s16 have

the smallest interquartile-regret ranges and are leading contenders for the candidate

strategy for policy implementation. Of the two, s16 has the lower 90th percentile

regret and, for this reason, is chosen as scand.

With a candidate strategy selected, the RDM methodology calls for hedging op-

tions to be explored. As in Lempert et al. (2006), each future’s output is transformed

into a binary response. The binary response coincides with an absolute regret thresh-

old set forth by senior policymakers. We assume for this use case that such a limit

is 2500 jeribs in regret. That is, if the number of poppy cultivated jeribs for scand

exceeds 2500 jeribs of the best strategy for some future, then that future is considered
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a vulnerability of scand.

Utilizing this technique, the CART algorithm clusters the space into eight regions

of interest. These regions are separated based on the effectiveness of select counternar-

cotics actions, and a subset of demographics’ perceptions on crop income. However,

one cluster stands out as having a high density of vulnerabilities and high average

absolute regret. It is characterized by the simultaneous effectiveness of interdiction

and political support mobilization on poppy income estimates, the ineffectiveness of

eradication messaging on the perceived raid probabilities, the DVI demographic be-

lieving poppy and wheat income high in ample rain conditions conditions, and the RF

demographic regarding poppy income as high in ample rain conditions and tomato

income as high in drought conditions. With this vulnerable narrative identified, the

tradeoffs between utilizing s16 or some other strategy in terms of expected absolute

regret can be examined.

Figure 20. Cluster Tradeoffs Between s16 and Other Strategies
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Figure 20 illustrates the tradeoffs between utilizing s16 vis-á-vis the alternatives in

terms of expected absolute regret. The coordinate location of a strategy is determined

by the expected absolute regret via two narratives: the vulnerability cluster and the

remaining futures. The four strategies not depicted in Figure 20 (i.e., s1, s3, s5, s10)

exceed 3× 105 in both narratives. A frontier of non-dominated strategy performance

is formed by s12 and s16, as depicted by the solid line. This indicates that only

s12 and s16 are non-dominated strategies under this narative bifurcation. It can be

observed that a persuader’s preference between the two depends upon the respective

weight (perhaps in terms of probability) placed on the vulnerable scenario and its

complement. If weighted equally, a strategy on the dotted line closest to the origin

is preferred. However, as one narratives is given more weight, the preference shifts

to strategies close to the origin on one side of the line. Therefore, the more (or less)

weight the persuader respectively places on the vulnerable scenario, the more (less)

attractive strategy s12 becomes visá-vis strategy s16.

At this point, the RDM process can be repeated with s12 as scand and, potentially,

with the inclusion of additional information (e.g., more crops or additional influence

actions). Conversely, the RDM analysis can terminate with a choice between s12 and

s16 based upon the persuader’s beliefs on the vulnerable and the remaining future

narratives for expected absolute regret.

Moreover, the RDM procedure could also be repeated utilizing a distinct scenario

generator metric. As mentioned in Section 4.3, a variety of counternarcotics measures

exist to assess a strategy’s success. Besides the total number of poppy-cultivated

jeribs, the total kilograms of opium produced from a harvest has historically been

a relevant measure to policy-makers. Therefore, utilizing historical kilograms per

hectare yield data (UNODC, 2018b), estimated best- and worst-case empirical CDFs

(e.g., Figure 21) for the tons of opium from the Badakhshan poppy harvest could
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inform an alternative RDM analysis under a different measure defined by a senior

policy-maker.

Figure 21. Empirical CDFs for s12 with Best- and Worst-Case Opium Yields

Discussion and Limitations.

The selection of s16 as an initial candidate strategy is reinforced by counternarcotic

doctrine proposed by Ward and Byrd (2004) and SIGAR (2018a) who envision it as

a multifaceted effort. Furthermore, the choice between s12 and s16 coincides with a

core issues at the heart of the Afghan conflict: the effectiveness of interdiction and

security cooperation efforts (SIGAR, 2018a). In our use case, if a senior policy-maker

believes interdiction efforts can decrease farmers’ poppy net revenues and, they are

also optimistic regarding the capability of Afghan partners and the coalition’s ability

to support them, then action s12 should be adopted. Otherwise, s16 is the preferred

strategy.

The modeling methodology also addresses some criticisms by Mansfield and Fish-

stein (2016) pertaining to faulty assumptions in Afghan counternarcotic policy de-

velopment. That is, we do not treat the Afghan farmer as a homogeneous entity

maximizing gross profit, nor one who makes a binary decision between opium poppy

and wheat. Instead our approach addresses the diversity of Afghanistan demograph-

ics, considers net profits, and examines a variety of crop selection profiles.
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However, the modeling methodology utilized is not a perfect representation of

reality. Although we addressed the diversity of Badakshan farmers, a higher fidelity

characterization may be required to inform policy decisions. Badakhshan is a mul-

tiethnic region comprised of Tajiks, Uzbeks, and Pashtos, among others (Fishstein,

2014). The effect of a farmer’s demographic on a crop decision may be non-trivial, es-

pecially when concerned with emotional stimuli (Gladwell, 2008). Moreover, a richer

characterization of the crops available for planting may also be required using district

rather than provincial level data. A diverse set of crop options are available to Afghan

farmers, and deterring poppy cultivation may require creative incentives among them.

Unfortunately, the data required to inform such decisions at this granular level is not

available in open source collections and would require an expansive data gathering

effort analogous to other UNODC projects.

Our models also only consider a portion of the interconnected Afghan economy,

of which farming is a critical component. It provides land-access (via sharecropping)

and income (via day labor) to the rural poor. As such, the crop selection of Afghan

landowners can have far reaching effects. Such effects were observed during the im-

plementation of the HFZ. While the program resulted in landowners deciding to plant

less poppy, these decisions resulted in less profitable sharecropping agreements and

less demand for on-farm labor (Mansfield, 2017).

As such, the program coincided with a migration of the landless poor into former

desert areas (e.g., Bakwa in Farah province) and an increase in poppy cultivation in

these regions (SIGAR, 2018a). Just as such effects were unforeseen by the planners of

the HFZ, so too would they be unforeseen in the analysis presented in this research.

The decisions of the landless poor could be included and linked to the our analysis

but, ultimately, the scale of the influence model must be determined based upon the

persuader’s underlying objectives.
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The influence models presented herein are static, closed system approximations

of a component in an open, dynamic system. The entirety of the dynamic system

cannot be modeled. Instead, the influence model should be contained to represent

only the relevant elements of the full system. In this study, we assume such elements

to be restricted to the landowners themselves.

Finally, the Badakhshan landowner influence model is designed to affect change in

a single growing season. Such a time frame is far too short upon which to build a com-

prehensive counternarcotics policy. Historically, successful policies have taken decades

versus months or years (Ward and Byrd, 2004) and, in this time frame, external mar-

ket factors not incorporated in this research become increasingly relevant. Therefore,

the models illustrated herein do not yield a panacea to stop poppy cultivation, but

they facilitate the development of counternarcotic policy toward incremental, gradual

change.

4.4 Conclusions

In this research, we presented a framework for modeling influence under parametric

and structural uncertainty and illustrated how robust decisions in this setting can be

identified. In this manner, a persuader can generate a robust nudge strategy (Thaler

and Sunstein, 2009) that relies upon System 1 (i.e., automatic thought), System 2

(i.e., reflective thought) influence, or a mixture thereof (Kahneman, 2011).

The utility of our methodology was demonstrated on the global, contemporary

problem posed by the illicit opium economy. Specific emphasis was applied to re-

ducing opium poppy supply from the world’s leading poppy producing nation by

targeting the Afghan province of Badakhshan. This province is an appealing target

for counternarcotic efforts because, in accordance with SIGAR (2018a) guidance, it

is relatively well-controlled by the national government. However, insurgent groups
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have a large enough presence regionally that they may be generating significant in-

come from the province’s illicit activities (Chughtai, 2018).

In addition to providing an alternative model for counternarcotic policy develop-

ment, the Badakhshan use case illustrates how an influence model can be developed

under uncertainty. The discussion in Section 4.3 exemplifies the level of empathy

and situational awareness required both to infer the underlying decision setting and

to estimate the effects of influence upon it. From a technical perspective, the use

case also demonstrates how the RDM framework can be tailored to fit a particular

influence problem and how iterative rounds of analysis ought to be performed.

However, it is also the technical application of RDM for which much work remains

to refine the methodology. The development of ~F is based upon a space-filling design;

however, there are a variety of options from which a modeler can choose. Future in-

quiry is required to determine when one space-filling design is preferable to another

and what sampling density is suitable. Another open question pertains to the use-

fulness of optimal space-filling designs in this setting. The scenario generator is not

particularly demanding from a computational perspective; in fact, it is a relatively

direct application of CPT. Therefore, future inquiry into the tradeoff between com-

putational effort and solution quality via random sampling, sub-optimal space-filling

designs, or optimal space-filling designs is a promising endeavor.
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V. Leveraging Behavioral Game Theory to Inform Military
Operations Planning

Abstract

Since Thomas Schelling published The Strategy of Conflict (1960), the study of

game theory and international relations have been closely linked. Developments in

the former often trigger analytical changes in the latter, as evidenced by the recent

behavioral and psychological focus among some international relations and defense

economics scholars. Despite this connection, decisions regarding military operations

have rarely been influenced by game theoretic analysis, a fact often attributed to

standard game theory’s normative nature. Therefore, this research applies selected

behavioral game theoretic solution techniques to classical interstate conflict games,

demonstrating their utility to inform the planning of military operations. By reex-

amining classic Cold War deterrence models and other interstate conflict games, we

demonstrate how modern game theoretic techniques based upon agent psychology,

as well as the ability of agents to think strategically or learn from past experience,

can provide additional insights beyond what can be derived via perfect rationality

analysis. These demonstrations illustrate how behaviorally focused methods can in-

corporate the uncertainty related to human decisionmakers into analysis and highlight

the alternative insights a bounded rationality approach can generate for military op-

erations planning.

5.1 Introduction

For nearly two weeks at the end of October 1962, the events surrounding the Cuban

Missile Crisis arguably constituted the single most consequential decision setting in

history. Fortunately, Soviet premier Nikita S. Khrushchev and American president
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John F. Kennedy both chose to back away from decisions that would escalate the

conflict, possibly into a nuclear armageddon. A disaster was averted.

The characteristics of a leader determine, at least in part, their strategic decisions.

History has shown that a leader’s intellect, temperament, background, biases, and

other psychological factors play a critical role throughout the course of a conflict and

in its resolution. Therefore, more than fifty years after the Cuban Missile Crisis,

one cannot help but wonder... what if Joseph Stalin had not passed away? What if

Richard Nixon had won the 1960 American presidential election? What if the Bay of

Pigs had not eroded President Kennedy’s trust in his military advisors? How would

the successive decisions made by these world leaders have differed? Unfortunately,

traditional game theoretic concepts used to analyze such situations provide no insight

to answer such questions.

In formal models of interstate conflict, states are often modeled as strategic-

thinking entities attempting to maximize their self-interest (Schelling, 1960, 1966;

Powell, 1990; Zagare and Kilgour, 2000). Insights are historically gained through an

application of some traditional game theoretic equilibrium concept. However, the

concept of an equilibrium imposes an additional assumption. Players are assumed to

form their responses based upon accurate beliefs of what their adversaries actually

do; that is, all players are mutually consistent (Camerer et al., 2004). An equiva-

lent, and more formal exploration of these conditions is considered by Aumann and

Brandenburger (1995). Although alternative explanations exist to describe how these

conditions arise (e.g., folk wisdom or instinct), one valid interpretation is to consider

decisionmakers in these models as perfectly rational actors.

Under such an interpretation, the human aspects of the respective nations’ leaders

are not considered. People are generally overconfident (Kahneman, 2011; Johnson

and Fowler, 2011). Their decisionmaking is affected by emotional factors (Thaler,
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1999; Shiv et al., 2005), and they are unable to objectively perceive uncertainty

(Kahneman and Tversky, 1972, 1979, 1982; Kontek and Lewandowski, 2017). The

interpretation of humans (e.g., national leaders) as perfectly rational decisionmakers is

further complicated by the prevalence of mental health disorders in society. Wittchen

and Jacobi (2011) estimated that, within any contemporary twelve-month period,

27% of adults in the European Union suffered from a mental disorder. Davidson

et al. (2006) estimated that 49% of American presidents between 1776 and 1974

suffered from some psychiatric disorder (e.g., depression, alcoholism), and McDermott

(2007) illustrated the profound effect medical and psychological illness have exerted

on presidential decisionmaking.

For these reasons, recent research in international relations and defense economics

has begun to consider behavioral and psychological factors (e.g. see Pittel and

Rubbelke, 2012; Phillips and Pohl, 2017; Horowitz and Fuhrmann, 2018; Apolte,

2019). Rathbun et al. (2016) and Kertzer et al. (2018) respectively studied behav-

ioral effects on foreign-policy beliefs and costly signaling in international relations.

Little and Zeitzoff (2017) incorporated behavioral factors into bargaining models via

evolutionary preferences. Hafner-Burton et al. (2017) provided an extensive review

of relevant behavioral theories, previous studies of their implementation, and their

collective implication for the study of international relations. Other recent examples

of behavioral studies questioning the role of rationality in political decisions include

the work of Caplan (2006), Andonie and Diermeier (2017), Thomas (2018), Lee and

Clark (2018), and Tóth and Chytilek (2018).

However, such a behavioral paradigm shift has not yet manifested itself in game

theoretic applications to military operations planning. The lack of emphasis on play-

ers’ humanity in traditional solution concepts has discouraged the application of game

theory to the planning of military campaigns. “Homo economicus rather than deontic
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logic have deterred [war]gamers from studying game theory, and thus the perceived

value of applying game theory to [war]gaming has been limited” (Hanley Jr., 2017b).

Whereas many scholars in recent decades have seen the potential of incorporating

game theory into the process (e.g. see Leibowitz and Lieberman, 1960; Taylor, 1978;

Athans, 1987; Cruz et al., 2001; McEneaney et al., 2004; Boardman et al., 2017), actu-

ally doing so has been limited by the military desire to “anticipate how the key players

may act” (Hanley Jr., 2017b) and the difficulty of anticipating human behavior when

assuming perfectly rationality of actors. Conversely, behavioral game theory (BGT)

“expands analytical theory by adding emotion, mistakes, limited foresight, doubts of

how smart others are, and learning to analytical game theory” (Camerer, 2011) and

focuses on describing how players actually interact.

Of the recent BGT developments, two frameworks are of particular importance for

military operations planning: the Cognitive Hierarchy (CH) model and Experience

Weighted Attraction (EWA) model. Camerer et al. (2004) developed the CH model

that formalized the intuition of Selten (1998) that the “natural way of looking at

game situations... is [through] a step-by-step reasoning procedure”. With relatively

few assumptions, the authors develop an empirically accurate model of play for one-

shot games based upon a parameter characterizing the players” strategic thinking

abilities. By comparison, the EWA model developed by Camerer and Ho (1998, 1999)

describes the empirical learning behavior of agents in a variety of repeated games.

The EWA model is defined with psychological parameters identifying the players”

tendencies toward regret, forgetfulness, and myopia.

From a military operations perspective, these models are particularly useful when

planning for a one-shot engagement, a new type of hostility, or a recurring conflict.

Instead of removing the underlying human uncertainties, these models incorporate

them into an agent-based approach, thereby addressing two deficiencies associated
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with legacy analysis techniques (Hanley Jr., 2017a). As such, in this research, we

illustrate how CH and, when appropriate, EWA can be effectively utilized to garner

insights for the conduct of military operations.

The remainder of this manuscript is structured as follows. We begin in Section

5.2 by reviewing each behavioral game theory model and their respective parameters.

These models are applied in Section 5.3 to classic interstate conflict games, illustrating

the alternative insights they derive relative to traditional methods and, in doing so,

exhibiting their utility for military operations planning in an accessible manner. We

also discuss how behavioral uncertainty can be incorporated to inform the planning

of a military operation and balance between the two command styles discussed by

Haywood (1954): planning against enemy capability vis-á-vis planning against enemy

intent (i.e., what the enemy is able to do versus what the enemy will do). Finally,

we discuss additional BGT models that can be used to inform military operations in

Section 5.4 and provide concluding remarks in Section 5.5.

5.2 Behavioral Game Theory

“Behavioral Game Theory stands alone in blending experimental evidence and

psychology in a mathematical theory of normal strategic behavior” (Camerer, 2011).

The field takes an experimental economic approach to game theory, and it utilizes

empirical results to guide theory. In this section, we review two prominent models

in the discipline: one which characterizes behavior in one-shot, normal form games,

and the other describing learning in repeated play. These models provide a basis

of play rooted in empirical results, but also provide more definitive predictions than

their standard equilibrium counterparts. For a given τ -parameter characterizing the

distribution of opponents” depths of strategic thought, the CH model provides a single

estimate of play, and when simulated many times, the EWA model provides a range

143



www.manaraa.com

of expected behavior. Likewise, these behavioral methods are readily adaptable to

games having a large number of players, whereas finding equilibrium in such situations

is a computationally burdensome task (Shoham and Leyton-Brown, 2008).

Cognitive Hierarchy.

From the earliest application of game theory to interstate conflict, there has ex-

isted the concept of step-by-step reasoning. Schelling (1960) referred to this general

structure with regard to the “reciprocal fear of surprise attack”, describing how the

Soviet Union and the United States interact in a game of preemptive attack. Schelling

described the problem as a process produced by successive cycles of “He thinks we

think he thinks we think... he thinks we think he’ll attack; so he thinks we shall; so he

will; so we must”. Schelling (1960) noted that this structure can be formalized using

a potentially infinite set of probabilities composed of the products of the following

event probabilities and their reciprocals: P1 (i.e., the probability the opponent prefers

to attack), P2 (i.e., the probability opponent thinks we prefer to attack), P3 (i.e., the

probability opponent thinks I believe they prefer to attack), and so on.

In Schelling’s estimation, “the trouble with the formulation is that nothing gener-

ates the series” and that “each probability is an ad hoc estimate”. Instead, he sought

a reformulation of the problem to gain insights. However, the Cognitive Hierarchy

model set forth by Camerer et al. (2004) allows for analysis of player interaction in

its original step-by-step reasoning form.

The CH model assumes that players are defined by the number of reasoning steps

they compute in selecting an action, and their beliefs on the number of steps computed

by other players. Agents are overconfident, and they do not realize that other agents

can use as many reasoning steps as they do (i.e., a k-step player believes all others are

[k-1]-step players or less). A game is assumed to be characterized by a true probability
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distribution over the number of reasoning steps a player utilizes. Generally, a Poisson

distribution defined by the parameter τ is used. The larger the value of τ , the more

reasoning steps players utilize, on average. As players are overconfident, they are

unable to perceive this true distribution. Instead, Camerer et al. (2004) assumed the

subjective belief a k-step player assigns to encountering an h-step player is equal to

gk(h) =
f(h)∑k−1
l=0 f(l)

(36)

where f(h) is the true probability of an h-step player being encountered from the

underlying Poisson distribution. That is, the true probabilities are normalized to

form a k-step player’s beliefs. Utilizing these beliefs, a player’s strategy is calculated

by maximizing their expected payoff. Namely, a strategy j for player i is selected

such that sji maximizes

E
(
π(sji )

)
=

m−i∑
j′=1

π(sji , s
j′

−i)
[ k−1∑
h=0

gk(h)Ph(s
j′

−i)
]

(37)

where E
(
π(sji )

)
is player i’s expected payoff for playing strategy j; π(sji , s

j′

−i) is player

i’s payoff for playing strategy j when his opponents play the strategy vector j′; m−i is

the number of possible opponent strategy vectors; and Ph(s
j′

−i) is the probability that

h-step players would actual commit to strategy j′. If multiple strategies are found to

achieve the same maximum payoff, the player is assumed to randomize equally among

them.

In this way, the CH model formalizes the step-by-step reasoning process by limiting

its depth and forcing convergence as k increases. As k grows sufficiently large, a k-step

and a [k+1]-step player have the same beliefs and therefore take the same action(s).

In practice, a game is solved via CH recursively by starting with 0-step players and

iterating up to this k-value. Thus, the assumption of 0-step player behavior is the

145



www.manaraa.com

bedrock for all higher order player actions. Such players are assumed to not think

strategically and randomize over the strategy space. In keeping with Camerer et al.

(2004), we assume 0-step players randomize over this space uniformly.

The CH model primarily characterizes behavior in a game by the Poisson param-

eter τ . In their study of a variety of games, including the beauty contest and market

entry games, Camerer et al. (2004) found that common estimates of τ are approxi-

mately in the range [1, 2] with the value 1.5 reliably predicting expected behavior in

new games. Likewise, as τ → ∞ the CH model will converge to any Nash equilib-

rium reached by finitely deleting weakly dominated strategies but, in general, such

convergence is not guaranteed.

In a military operations planning setting, it may prove difficult to derive enough

empirical evidence to estimate τ directly. However, qualitative estimates can be

identified by heuristically assessing the level of strategic thinking utilized by the

interacting entities. Alternatively, the interaction can be readily examined under a

large number of τ -estimates to obtain a range of expected behavior. Such an approach

is illustrated in Section 5.3 by examining all τ in the set {0, 0.1, ..., 50}.

Furthermore, the CH model is fit with τ -values corresponding to a population

of individual decisionmakers. In a military operations setting, the ultimate decision

authority may reside in an individual, but input is invariably received from a staff of

advisors. The decision process itself is often cooperative in nature. Therefore, it is of

interest for military operations planners to understand how this dynamic affects the

underling τ -value in one-shot games. We hypothesize that the collective input from

advisors will serve to increase the depth of strategic reasoning, but experiments must

be conducted to support or refute this conjecture.
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Experience Weighted Attraction.

Camerer (2011) noted that “there are no interesting games in which subjects

reach a predicted equilibrium immediately. And there are no games so complicated

that subjects do not converge in the direction of equilibrium”. However, standard

game theory does not explicitly address the expected behavior of boundedly rational

agents, nor does it address the temporal aspect of equilibration. In some games,

players quickly adapt and move to an equilibrium state but, in other games, it is a

process that may require years or decades (Camerer, 2011).

The EWA model developed by Camerer and Ho (1999) attempts to address these

concerns. It is a learning model that can be tuned to characterize the path players

take towards an equilibrium profile over repeated play. The EWA model assumes

players use reason to adopt a starting strategy profile which then evolves due to both

beliefs formed and reinforcement received over repeated interaction.

The EWA model is centered upon two key concepts: (1) an accumulated experi-

ence variable, and (2) attraction values toward given strategies. At time zero, each

player i is assumed to have some initial experience value, Ni(0), and some starting

attractions toward each strategy j, Aji (0). The initial experience value is assumed

to be derived from experience playing different games and introspection, whereas the

initial attractions are assumed to come from some strategic reasoning process (e.g.,

the CH model). Subsequent experience variables for player i at time t are represented

as

Ni(t) = φi(1− κi)Ni(t− 1) + 1, t ≥ 1. (38)

wherein φi is a decay factor representing loss of salience of previous interactions, and

κi is a factor describing the level at which the strategy space is explored or exploited.

That is, κi-values closer to 0 represent a tendency to explore, whereas κi-values closer
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to 1 represent a more exploitive framework. Collectively, the product of these two

parameters describes how past experience is discounted.

The attraction value player i allots to a given strategy j at time t utilizes the

experience variable and is calculated as follows:

Aji (t) =
φiNi(t− 1)Aji (t− 1) +

[
δi + (1− δi)I(sji , si(t))

]
πi(s

j
i , s−i(t))

N(t)
(39)

such that δi is an imagination factor placed on foregone payoffs, sji is the strategy of

corresponding to Aji (t) support, si(t) is the strategy actually played by player i in

period t, and I(sji , si(t)) is an indicator function turning on and off the imagination

effect, as appropriate. That is, I(sji , si(t)) = 1 if sji = si(t), and 0 otherwise.

These attraction values are then used to update the probabilities with which each

player utilizes a given strategy by

P j
i (t+ 1) =

eλA
j
i (t)∑mi

k=1 e
λAki (t)

(40)

wherein λ represents sensitivity to attractions and may be influenced by perception,

rate of computational errors, or unobserved payoff components (e.g., desire for variety

of play).

The EWA model has been shown to generalize a variety of other learning algo-

rithms (e.g., reinforcement learning, belief learning, and weighted fictitious play),

depending on the values of κi, φi, and δi. If these requisite parameters are known (or

assumed), learning behavior is simulated by successively generating player strategies

based on the values of P j
i (t) and updating Ni(t), A

j
i (t), and P j

i (t + 1). Expected

insights from the model can then be gained via the aggregation of outcomes over

multiple simulation runs.
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Alternatively, if observed behavior is known, the requisite parameters may be fit

by minimizing the likelihood function in a process analogous to that demonstrated

by Camerer and Ho (1998), or by performing multiple runs with a space-filling design

and selecting the parameter tuple minimizing the mean squared error of averaged

simulated path, similar to Roth and Erev (1998). The former is more computationally

efficient, but the latter is easier to implement.

With regard to the use of EWA in military operations planning, the characteri-

zation of learning behavior is extremely useful because many problems in combat do

not occur in a one-shot setting but repeat multiple times. Whereas an invasion or an

armistice may occur in a one-shot setting, other activities (e.g., reconnaissance) are

frequently revisited. For such missions, learning plays a definitive role in the interac-

tion. Utilization of the EWA model or one of its extensions (e.g. Camerer et al., 2002;

Ho et al., 2007) to the planning of military operations can incorporate this element

of repeated play and may provide heretofore hidden insights.

5.3 Applications to Military Operations Planning

The military operations planning process can be characterized by the following

five steps: (1) receipt of the mission, (2) development of situational awareness and

available courses of action, (3) analysis of opposing courses of action, (4) comparison

of courses of action, (5) selection of a course of action. Although the delineations

between the aforementioned activities may differ, such a general framework has been

used in the United States since before World War II (Haywood, 1954) and is a hall-

mark of modern, Western operations planning (Australian Department of Defence,

2009; U.K. Ministry of Defense, 2013; SHAPE, 2013; U.S. Joint Chiefs of Staff, 2017b).

Given such commonalities, we illustrate in this section how BGT can help analyze

and compare courses of actions for a military operation. Generally speaking, we
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refrain from adapting the lexicon of any particular planning paradigm (e.g., the Joint

Operations Planning Process); however, we do find it useful to highlight how each

of the examples relate to the six-phase Continuum of Military Operations: Phase

0 (Shaping the Environment), Phase 1 (Deterring the Enemy), Phase 2 (Seizing the

Initiative), Phase 3 (Dominating the Enemy), Phase 4 ( Stabilizing the Environment),

and Phase 5 (Enabling Civil Authority). For further information regarding these

phases, we refer an interested reader to Joint Publication 3-0: Joint Operations (U.S.

Joint Chiefs of Staff, 2017a).

In Sections 5.3-5.3, we treat the military planners as endogenous entities in the

respective BGT frameworks. That is, planning activities are conducted with the in-

corporation of friendly and adversarial bounded rationality. Such a perspective is of

particular utility in decentralized execution structures because a higher headquarters

does not always seek to directly control subordinate commanders’ decisions; instead,

these commanders are often granted a degree of autonomy to account for the velocity

of the decision making environment (Shamir, 2010). In these sections, we also illus-

trate how planners can incorporate uncertainty regarding behavioral parameters (i.e.,

behavioral uncertainty) into their analyses.

Conversely, in Section 5.3, we consider a setting wherein the military planners

are exogenous of the BGT frameworks. These planners are aware of the adversary’s

bounded rationality and seek to exploit it to their benefit. Such an approach is most

appropriate for centralized command and execution. For these settings, we illustrate

how planners can incorporate behavioral uncertainty to select robust courses of actions

in view of the enemy’s capabilities and intent.

Each of these sections utilize BGT in the analysis of well-known, interstate con-

flict models. Although these models are classical rather than contemporary, we utilize

them to ensure the accessibility of our results to a broad readership by striking a bal-
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ance between military relevance and technicality of illustration. However, in Section

5.4, we discuss how the BGT methods utilized herein and others introduced in Section

5.4 can be utilized in more complex game theoretic settings.

Brinkmanship: Nuclear Crisis Game.

We begin by analyzing a well-known metaphor for brinkmanship, namely the

the two-player, normal form game of Chicken in a one-shot setting (Russell, 1959;

Kahn, 1960; Rapoport and Chammah, 1966). Although often framed in the context

of nuclear deterrence, a variety of military activities at the tactical level exhibit a

similar structure (e.g., confrontations during Freedom of Navigation operations). As

such, we take the perspective of a higher headquarters planning for such a deterrent

activity in Phase 1 of the Continuum of Military Operations. The decision authority

for this interaction has been delegated to a subordinate commander, and the higher

headquarters wishes to understand the potential behavior of friendly and enemy forces

arising from a particular course of action.

The specific payoffs we utilize for this analysis can be found in Table 19. Should

this matrix game be analyzed with the assumption of perfect rationality, there are

two pure Nash equilibria and one mixed Nash equilibrium: (1) the row player holds

firm and the column player deescalates, (2) the row player deescalates and the column

player holds firm, or (3) both players deescalate with probability 0.9, and hold firm

with probability 0.1.

Table 19. Two-player Nuclear Crisis Game

Deescalate Hold Firm
Deescalate (0,0) (-1,1)
Hold Firm (1,-1) (-10,-10)
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If this assumption is relaxed, and players are assumed to be boundedly rational

by utilizing the step-by-step reasoning of the CH model, we arrive at similar, albeit

differing results. Since the higher headquarters is uncertain of the strategic thinking

ability of both forces’ leaders, the CH model is utilized with all instantions of τ in

the set {0, 0.1, ..., 50}. Figure 22 displays the probability that a player will choose

to deescalate as a function of τ ; the probability of holding firm is its compliment.

The three horizontal lines on the graph represent the three Nash equilibria. The

symmetry of the game lends itself to identical strategy profiles under CH for the row

and column players. Thus, Figure 22 applies to both players. Utilizing the suggested

value of τ = 1.5 for untested games (Camerer et al., 2004), the CH model predicts

that a player will deescalate with probability 0.8884. If this value of τ is correct, then

we should expect the mixed form equilibrium to predict behavior well. Furthermore,

the CH model has enabled differentiation between the three Nash equilibria. Our

results suggest that when τ →∞ the players’ strategies converge to the mixed Nash

equilibrium.

Figure 22. Player strategies as a function of τ

However, the CH model also yields an unexpected result. We can assume that war

occurs in this game if both players simultaneously choose to hold firm. Therefore, the

probability of war is the associated product of each players’ hold firm probabilities. As

the average depth of strategic thinking (i.e., τ) increases, war becomes improbable,
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converging to a 1% chance. However, there are oscillatory patterns which make

marginal increases in strategic thought dangerous. For instance, with τ = 1.5 there

is a 1.2% chance of war; however, a relatively marginal increase to τ = 2 corresponds

to a 6.2% chance of war. This illustrates a counterintuitive instance wherein a more

strategic population of decisionmakers is more likely to take action resulting in a worse

collective outcome. The importance of such results to military operations planning is

apparent when considering that this example is reminiscent of how Tuchman (1962)

described the onset of World War I.

Figure 23. Probability of war as a function of τ

We now focus on the subject of learning and consider how player strategies might

evolve when two forces repeatedly engage in brinkmanship. The EWA model is de-

signed to fit observed data. However, if no data exist, a strategist may be able to

qualitatively assess each actor’s tendency toward regret (δi), forgetfulness (φi), and

myopia (κi). Alternatively, they could utilize regressed parameters from other games

if they believe behavior will be similar. Therefore, in this notional example, we utilize

the parameters fit by Camerer et al. (2002) on the continental divide game such that,

for any player i, we have φi = 0.61, κi = 1, and δi = 0.75. The initial attractions

are found by inserting the probabilities derived from the CH model with τ = 1.5 into

equation (40) and solving for Aji (0). Likewise, for simplicity, we assume that for each

player i we have λi = 1 and Ni(0) = 1. One hundred simulations were run for one

hundred interactions each to explore how players of these types might learn in this
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game. The results of these simulations can be seen in Figure 24 .

Row Player

Column Player

Figure 24. Players strategies over time in 100 simulated EWA runs

The plots within Figure 3 illustrate a set of players that diverge from the mixed

strategy equilibrium and converge in the direction of one of the pure strategy equi-

libriums. That is, as one player decreases the probability of holding firm, the other

increases their probability of holding firm, and vice versa. Of note, the lowest the

probability of holding firm reached in all simulations was 0.07. While it never reached

zero, this is not an artifact of the EWA model but of the parameters chosen. For

instance, if the φi-values are increased to 0.81, players reach a zero probability of

holding firm.

The results depicted in Figure 24 are interesting, especially because they show

some instances wherein the players attempt to switch between the true pure strategy

equilibria. However, they also implicitly assume the brinkmanship game is repeatedly

played even if both sides hold firm. Alternatively, if one assusmes that war occurs if

both sides decide to hold firm simultaneously, the histogram in Figure 25 illustrates

the number of time periods our brinkmanship game was played until either a war
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occurred or the 100 limit maximum was reached, in bins of 5 time periods. It can

be observed that the majority of simulations end with a positive outcome: no war

occurs. However, approximately 30% of the simulations end prior to 10 stage game

iterations.

Figure 25. Number of time periods before nuclear exchange

The results of this BGT analysis, in effect, categorize the Nash equilibria. When

the game is first played, the CH model predicts that strategic reasoning enables players

to arrive at the mixed Nash equilibrium strategy. As agents repeatedly play the game,

strategies diverge from this profile and converge toward one of the pure Nash equilibria

wherein one player deescalates with certainty. In general, this convergence process

takes time but is complete after 50 iterations of play. This result implies that the risk

of war is at its highest in early stages of brinkmanship and reduces drastically if war

is not triggered at this early juncture. Such an observation is supported by Figure

25 wherein war occurs infrequently after 10 repetitions of the stage game. Therefore,

for this game, the CH and EWA models do not necessarily supplant analysis from a

perfect rationality perspective but augment it.

Target Selection: D-Day Game.

We again consider a higher headquarters examining the ramifications of a par-

ticular course of action on the interaction between a subordinate commander and
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the enemy. Assuming an interaction occurring during Phase 3 of the Continuum of

Military Operations, a subordinate commander is tasked to achieve some objective

and is delegated targeting responsibilities. The enemy wishes to limit the damage of

such aggression by hardening the targeted location.

Such a setting can be modeled in a manner analogous to a simple Colonel Blotto

game. For example, the Allied invasion of German-occupied France in WWII can be

modeled via a modified Matching Pennies game (Crawford, 2003). The Allies and

the Germans can choose to attack or heavily defend, respectively, one of three sites:

Calais, Normandy, or Brittany. If the Allies invade a site the Germans have chosen to

heavily defend, they lose. Otherwise, they win. However, the game differs from the

standard Matching Pennies games in that there are three strategies, it is not zero-

sum, and selection of some strategies may incur an additional cost. The associated

payoff matrix, adapted from Kydd (2015), can found in Table 20.

Table 20. D-Day Game

Germans
Calais Normandy Brittany

Allies
Calais (0,1) (1,0) (1,0)

Normandy (1-cN ,0) (-cN ,1) (1-cN ,0)
Brittany (1-cB,0) (1-cB,0) (-cB,1)

For illustration, we assume that cN = 0.25 and cB = 0.4. This instance of the D-

Day game does not have a pure strategy (strict) Nash equilibrium, but it has a mixed

equilibrium with p(Calais) = 0.55, p(Normandy) = 0.3, and p(Brittany) = 0.15

for the Germans, and the Allies mixing uniformly over their available strategies.

Under this equilibrium profile, the Allies attack a well-fortified location (i.e., attack

a position heavily defended by the Germans) with probability 0.334.

By it’s nature, the D-Day game can only be played once. As such, we utilize the

CH model to understand how different levels of strategic thought affect the game’s
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likely outcome, and compare these results with analysis under the assumption of

perfect rationality.

Figure 26. Probability Allies attack a well-fortified location as a function of τ

We begin by analyzing the probability that the Allies attack a well-fortified lo-

cation. This probability as a function of τ can be seen in Figure 26. With smaller

τ -values, this probability appears to vary erratically, but begins to behave more sta-

bly as τ increases. However, the probability of attacking a well-fortified location in

the CH model appears to converge to approximately 0.38 as opposed to the 0.334 in

the Nash equilibrium, indicating the CH model is yielding a different strategy. The

resulting CH strategies of each player for τ ∈ {0, 0.1, ..., 50} can be seen in Figures

27 and 28.

The CH model provides different insights than would be expected from an analysis

assuming perfect rationality. At 0-level thinking, the Germans completely random-

ize across their strategies and as they increase in strategic thinking (along with the

Allies), their play begins to diverge from this profile. However, their strategy does

not converge to the mixed equilibrium. In fact, at τ = 50, the Germans are ex-

pected to randomize as follows: p(Calais) = 0.4053, p(Normandy) = 0.5296, and

p(Brittany) = 0.0651. In turn, the Allies, who begin at their equilibrium strategy,
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Figure 27. Allies’ strategies with τ = 0, 0.1, 0.2, ..., 50

largely avoid this profile for other levels of τ . For example, at τ = 50, the Allies

are expected to randomize with p(Calais) = 0.3966, p(Normandy) = 0.3824, and

p(Brittany) = 0.2210.

Figure 28. Germans’ strategies with τ = 0, 0.1, 0.2, ..., 50

Therefore, unlike the Nuclear Crisis game, the CH model does not appear to

converge towards the Nash equilibrium as τ →∞ for this game. Admittedly, it may

be necessary to increase τ well beyond the ranged tested herein to observe convergence

to the equilibrium, but it may also be the case that equilibrium in this game cannot

be reached by strategic reasoning alone. For the equilibrium strategies to be realized,

it may be necessary for the players to learn. However, given that the D-Day game

occurs in a one-shot setting, learning from repeated play cannot be realized. If this
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holds true, the assumption of perfect rationality would severely inhibit analysis and

lead to incorrect conclusions.

From an operational planning perspective, the CH analysis indicates that a bound-

edly rational subordinate commander might struggle to gain an advantage over the

enemy in this situation. Therefore, if conditions permit the centralization of this

targeting task, the results of Section 5.3 illustrate how knowledge regarding the en-

emy’s strategic thinking ability can be leveraged to develop a strategy that balances

planning between enemy capability and intent.

First Strike Decision: Preemptive War Game.

Schelling (1960) contrasted Cold War interaction between the United States and

the Soviet Union with regard to preemptive strikes via the “reciprocal fear of sur-

prise attack’. The Prisoner’s Dilemma and Assurance games have been described as

two special cases of this dynamic (Kydd, 2007). However, such Phase 0 operations

in the Continuum of Military Operations are not a relic of the Cold War. They

have continued into modernity (e.g., the Korean Demilitarized Zone and worldwide

counterterror operations) and, in this example, we consider a higher headquarters

analyzing the effect of a course of action giving rise to such a scenario.

More formally, we illustrate one-shot behavior for both the Prisoner Dilemma and

Assurance games with the CH model, and we demonstrate how descriptive EWA-

parameter profiles can be captured from observed play with the Prisoner’s Dilemma

game. The example payoff structures of both games utilized in this analysis are

presented in Tables 21 and 22.

The Prisoner’s Dilemma variant has a single Nash equilibrium of mutual attack

that can be found by the iterated removal of dominated strategies. As such, the CH

algorithm will converge to this point as τ → ∞. This result can be seen in Figure
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Table 21. Preemptive War: Prisoner’s Dilemma Game

No Attack Attack
No Attack (3,3) (-1,4)

Attack (4,-1) (0,0)

Table 22. Preemptive War: Assurance Game

No Attack Attack
No Attack (8,8) (1,3)

Attack (3,1) (2,2)

29. As in the Nuclear Crisis game, the symmetry of the payoffs enables this graph to

describe each player’s behavior. However, the pure strategy equilibrium is not reached

until τ is approximately five. At lower levels of thinking, the probability of one side

choosing not to attack may be non-trivial. Therefore, a unilateral attack is conceivable

under bounded rationality, whereas this is not the case under perfect rationality

analysis. These results echo those of the brinkmanship example; the probability of a

collectively worse outcome (i.e., a bilateral attack) increases with the level of thinking.

Figure 29. Probability No Attack in Prisoner’s Dilemma as a function of τ

Conversely, the Assurance game variant has three Nash equilibrium strategies.

Two pure strategy equilibrium with both sides choosing to attack or not attack, and

one mixed strategy equilibrium with both players attacking with probability of 5
6
. The
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CH algorithm, in this case, shows very encouraging results. In Figure 30, it can be

observed that as τ increases, the players both converge (due to symmetry) to a 100%

probability of not attacking. Therefore, according to the CH model, the Pareto opti-

mal equilibrium is met as players collectively begin to think more strategically. This is

an interesting result since analysis under perfect rationality is unable to differentiate

between these equilibrium without additional assumptions (e.g., signaling).

The CH model’s results for the Assurance game provide a foil to those of the

Prisoner’s Dilemma game; the probability of a collectively better outcome increases

with the level of thinking. Thus, these results illustrate how BGT methods can begin

to quantitatively model individual deterrence situations contingent on the character-

istics of the respective leaders. Furthermore, the Assurance game shows convergence

towards the referenced equilibrium when τ is approximately five, akin to the afore-

mentioned Prisoner’s Dilemma variant. These two variants of the Preemptive War

game stand in contrast to the Nuclear Crisis game which continued to demonstrate

oscillatory behavior at τ = 5.

Figure 30. Probability No Attack in Assurance game as a function of τ

We now turn our attention to the descriptive characterization of players with the

EWA model from empirical data. In the Nuclear Crisis game, we demonstrated in

Section 5.3 how if the appropriate parameters can be estimated for a new game (i.e.,

players are assumed to play one game analogous to another), future learning behavior

can be estimated utilizing the EWA model. However, if instead empirical behavior
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has been recorded, the parameters for the game in question can be estimated directly.

Although the gathering of such data is a non-trivial endeavor, it may be facilitated

if a planner is willing to utilize either noisy data of past conflicts or data that is

sufficiently representative of the operational application.

Andreoni and Miller (1993) performed experiments wherein undergraduate stu-

dents repeatedly played the Prisoner’s Dilemma game. Herein, we assume historical

data is assembled such that their strangers data set is representative of mean play

over ten time periods for the friendly and enemy players in a Prisoner’s Dilemma game

as in Table 21. Assuming common parameters across players, we utilize a 50-point

spherical packing design on the relevant parameters which we assume are identical

for each player: φi, δi, κi, λi, and A1
i (0). The respective bounds for these parameters

are set at [0, 1], [0, 1], [0, 1], [0.1, 2.1], and [0.1783, 0.2554]. Of note, the bounds of

A1(0) are selected to ensure the associate probability at time zero is in the range

[0.3, 0.4] when utilizing equation (40). For the sake of illustration, we assume N(0)

is known and equals one. Figure 31 presents the results of the best fit parameter

setting, namely φi = 1, δi = 0.4643, κi = 0.1404, and A1
i (0) = 0.2554. The quality

of fit is via the sum of squared errors on the mean “No Attack” strategy over 200

iterations of the simulation.

Figure 31. Empirical vs. simulated mean for Prisoner Dilemma fitted EWA

As can be observed, the simulation appears to achieve an adequate fit with a

total sum of squared error value of 0.0051. However, if the CH model is assumed to
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generate initial conditions, an A1
i (0) value of 0.4 corresponds to a τ = 0.22. This

result appears to indicate that, in the experiment conducted by Andreoni and Miller

(1993), participants began by selecting strategies nearly randomly. Such results are

not necessarily indicative of operational planning problems, but they do demonstrate

how insights with regard to levels of strategic thought can be gained by observing

empirical data.

Incorporating Behavioral Uncertainty.

Unless an planner is certain of the underlying behavioral parameters which de-

scribe a specific interaction, BGT does not provide deterministic results. It shares

this characteristic with standard game theory when multiple equilibria exist.

Since equilibriums are merely fixed points, mathematically we cannot determine

which equilibrium is most likely to occur. However, this conundrum does not nec-

essarily exist when utilizing BGT solution concepts. That is, if planner is able to

quantify the behavioral uncertainty in a model, quantitative confidence measures of

the resulting interactions can be generated. Herein, we discuss the ramifications of

such an approach when a higher headquarters is exercising either decentralized or

centralized control.

Consider the CH model as utilized in the previous examples wherein the planners

contemplate the effect of a particular course of action on the interaction between a sub-

ordinate friendly commander and an enemy commander. Therein, we adopted a naive

approach with respect to behavioral uncertainty and assumed that τ ∈ {0, 0.1, ..., 50}

with no additional information. Under these conditions, the brinkmanship example

of Section 5.3 bounds the probability either agent deescalates between [0.5,0.9]. If

probabilistic information is available on the distribution of τ , this information can be

further leveraged to create a probability distribution on the respective players’ mixed
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strategies, thereby quantifying the behavioral uncertainty. For example, assume τ is

distributed consistent with the results of Camerer et al. (2004) with a mean equal to

1.5, and the majority of its mass between [1,2]. Such a distribution could take the

form of a simple piecewise uniform distribution as follows):

p(τ) =



5
10000

, τ ∈ {0, 0.01, ..., 0.99},

9
1010

, τ ∈ {1, 1.01, ..., 2},

5
480000

, τ ∈ {2.01, 2.02, ..., 50}.

(41)

This information can be leveraged to create probability mass functions of mixed

strategies for the players (rounded to the second decimal) as in Figure 32. By ex-

plicitly recognizing and modeling the stochasticity inherent in the interaction, the

resulting explanations derived from the game theoretic analysis mathematically ac-

knowledge that empirical deviations may occur and provide expected magnitudes of

these deviations. Moreover, they can be constructed for all relevant actors to provide

planners with a more informed estimate of a course of action’s effects.

Figure 32. Row Player Probability Mass Function for Likelihood of Deescalation

Furthermore, such characterizations of behavioral uncertainty are extremely useful

when the higher headquarters exercises centralized control over a given task. That

is, they enable a balance to be obtained between planning against enemy capability
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and planning against enemy intent. Haywood (1954) showed that planning against an

enemy’s capability is an inherently conservative approach akin to a maximin strategy.

When utilizing a capability-based approach, “a commander is required to assume

that the enemy can discover his decision and will adopt the most effective strategy in

opposition”. Conversely, planning against an enemy’s intent requires a commander

to anticipate the adversary’s decision and exploit it. If the commander’s assessment

of the enemy is correct, they may achieve a greater reward than a capability-based

approach; however, if the assessment is incorrect, they may also suffer a greater defeat.

Therefore, in what follows we describe three mixed approaches to the capability-

and intent-based approaches depending upon available information. The uncertainty

around the enemy’s intent is quantified, and an action is taken to maximize the

minimum payoff across this uncertainty.

Consider the D-Day example, but assume the perspective of the Allies. Since the

“best response [CH] dictates corresponds to what the highest-step thinkers do”, the

Allies can identify their preferred strategy by calculating the actions of an arbitrar-

ily large M -step thinker. If the Allies accept that their estimate of τ is subject to

error, they may identify robust solutions by quantitatively characterizing this uncer-

tainty. Such characterization may take the form of an uncertainty set (i.e., a range

of values), a probability distribution, or an ambiguity set (i.e., a set of probability

distributions), and the resulting robust solutions are akin to those derived from the

operations research techniques of robust optimization, stochastic programming, and

distributionally robust optimization.

Table 23 provides the data for an example of these modeling approaches, assum-

ing τ is in the uncertainty set {1, 2, 3, 4, 5}. Absent probability information and

assuming the payoffs are adequately representative of reality, the Allies should select

a robust policy by maximizing their minimum payoff. That is, they would attack
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Table 23. Allies’ Payoff and Uncertainty Information

Values for Pure Strategies Probability Distributions

τ E(Value Calais) E(Normandy) E(Brittany) p1(τ) p2(τ) p3(τ)

0 0.667 0.417 0.267 0.05 0.10 0.05
1 0.491 0.505 0.355 0.10 0.05 0.05
2 0.271 0.615 0.465 0.50 0.30 0.20
3 0.318 0.499 0.534 0.25 0.25 0.20
4 0.432 0.348 0.570 0.05 0.01 0.40
5 0.629 0.135 0.587 0.05 0.20 0.10

Calais for a maximin payoff of 0.271. Conversely, if the probability distribution p1(τ)

is accepted as truth, the Allies should attack Normandy for a maximum expected

payoff (i.e., expectation over both τ and E(π(sji )) of 0.528. However, if the Allies

believe there is additional error in the probability distribution estimate and consider

three distinct variants (i.e., p1(τ), p2(τ), and p3(τ)), a distributionally robust policy

entails attacking Brittany to attain a maximin expected value of at least 0.472.

Analysis of this form is not unique to the CH model. By characterizing the

uncertainty in the EWA model (or any of the models discussed in Section 5.4), similar

examinations can be performed. Therefore, BGT does not only provide analysis

informed by human psychology, it also allows for the development of more nuanced

decision doctrines. Military decisions need not be based on a binary interpretation

between capabilities and intent, but can be informed by both.

5.4 Alternative Game Models and BGT Modeling Approaches

The games analyzed in Section 5.3 were considered to ensure their comprehen-

sion by a broad readership. However, our choice of illustration does not indicate the

inapplicability of BGT to more complicated models. CH can be utilized for games

represented in normal form. Scholarship concerning arms races and power transition

(e.g. Baliga and Sjöström, 2004; Fearon, 2011, 2018), or those utilizing the Colonel
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Blotto framework as a structural basis (e.g. Roberson, 2006; Golman and Page, 2009)

are promising venues for future application. Other models of conflict that emphasize

bargaining (e.g. Powell, 2015; Slantchev, 2005), especially those assuming imperfect

information, may be analyzed with CH when represented in normal form. Such be-

havioral analysis is especially relevant given the empirical results of LeVeck et al.

(2014), who showed the “irrational” behavior of political elites in bargaining situa-

tions. The methods described herein are also useful for studying repeated play (e.g.

Fearon, 2018), when learning is a foremost consideration. For example, they can be

adopted as an alternative to the analysis proposed by Fearon (1994) if time is dis-

cretized. Initial game play would be determined utilizing CH, and the subsequent

learning process modeled with EWA.

Moreover, we focused primarily on the concepts of step-by-step reasoning and

learning in a military operations with normal form (one-shot or repeated) games.

However, many other behavioral solution concepts exist for other game structures.

For example, the extended form deterrence games of Powell (1990) and Zagare and

Kilgour (2000), or the bargaining models of Slantchev (2005) and Powell (2015) can be

analyzed utilizing the Agent QRE model of McKelvey and Palfrey (1998). Likewise,

alternative EWA models that incorporate dynamic parameters, strategic teaching, or

reputation generation can also be considered in repeated play (Camerer et al., 2002).

These algorithms can be adapted to include emotional effects, perceptual error, and

uncertainty by perturbing the decision rules. For instance, in a manner analogous

to trembling hand equilibrium, it may be assumed that the aforementioned factors

cause a player to err in their selection of perceived best response strategies. However,

to maintain a behaviorist justification, further empirical testing on these adaptations

would be required.

Additionally, this research illustrates the need for more empirical work with re-
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gard to other considerations in behavioral game theory. For efficient use in military

operations planning, it is desirable to empirically test how group deliberation, exper-

tise, and other demographic factors affect the τ -values in the CH model, and/or the

parameters in the EWA model. Intuitively, one can postulate that group dynamics

affect both the reasoning and learning processes, but there does not currently exist

any empirical research to confirm this hypothesis. Moreover, the CH model assumes

that τ is population-based but, in a military operations planning setting, the effect

of player specific τ -values is a promising area of future work.

Other behavioral constructs informed by cultural understanding are likely imper-

ative in the study of deterrence with regard to the evolved character of 21st Century

military operations. Henry Kissinger noted that “the classical notion of deterrence

was that there was some consequences before which aggressors and evildoers would

recoil. In a world of suicide bombers, that calculation doesnt operate in any com-

parable way” (Goddard, 2010). However, behavioral game theory may provide the

requisite tools to garner insight in this new era of deterrence modeling. For instance,

Henrich (200) described how members of the indigenous Machiguenga tribe of Peru

behaved decidedly different than players from Los Angeles when playing an Ultima-

tum game. Camerer (2011) provided an extensive literature review of other findings

elucidating this cultural effect, describing how some demographic groups tended to

behave in a manner seemingly inconsistent with perfect rationality predictions. How-

ever, the author concluded that the behavior originated from a misunderstanding

of the player’s utility functions and could be described with alternative structures

including emotional factors.

Therefore, if a suicide bomber is still governed by a value calculus, there is likely

some underlying systematic thought process upon which it is rooted, even if it initially

may appear irrational. The underlying logic need not be consistent for it to be
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understood, confronted, and deterred (Williams, 2008; Caplan, 2006). This behavioral

framework of deterrence focuses on the individual rather than the organizational level,

but given the unconventional structure of terrorist groups, this may be a necessary

evolution of thought and a productive area of future research.

5.5 Conclusions and Recommendations

This research has taken a first step in integrating behavioral game theory with

the planning of military operations. To do so, we reviewed and summarized various

bodies of work in BGT, and revisited many classic interstate conflict games to demon-

strate how varying insights can be gained through modern, behavioral game theoretic

solution concepts. The application of BGT on such fundamental, foundational models

depicts in an accessible manner their potential value to military operations planning

for an audience having modest or extensive understanding of either military planning

or game theory. However, they also indicate the need for future theoretical BGT re-

search, as some more complicated game forms do not yet have behavioral foundations

(e.g., stochastic games).

In general, BGT techniques do not supplant the traditional Nash equilibrium

solutions but supplement them. As seen in Section 5.3, CH and EWA can provide

additional context for games having multiple equilibria by labeling each equilibrium

as profiles met through reasoning or learning, respectively. Alternatively, as in the D-

Day example, strategic thinking by itself may not allow for an equilibrium profile to be

reached, implying that for some interactions occurring only once, insights drawn from

perfect rationality analysis are inappropriate and may lead to incorrect conclusions.

Finally, as illustrated in Section 5.3, BGT is well-suited to incorporate uncertainty

into the underlying analysis, allowing for the development of a balanced capability-

and-intent based decision doctrine.
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In aggregate, our illustrative instances demonstrate a set of tools that provide

utility to inform military operations planning, and provide behavioral game theorists

with motivation to study the effects of group dynamics in strategic reasoning and

learning for this context. Behavioral game theory removes the deterrent of homo eco-

nomicus that limited the use of standard game theory in military operations planning,

supplanting it with a more representative analytic framework focused on describing

actual competitive interaction via the incorporation of psychological factors.
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VI. Identifying Behaviorally Robust Maximin Strategies for
Normal-form Games under Varying Forms of Uncertainty

Abstract

Recent advances in behavioral game theory address a persistent criticism of tra-

ditional solution concepts that rely upon perfect rationality: equilibrium results are

often inconsistent with empirical evidence. For normal form games, the Cognitive

Hierarchy model is a solution concept based upon a sequential reasoning process,

yielding accurate characterizations of experimental human game play. These charac-

terizations are enabled by a statistically estimated parameter describing the average

number of reasoning steps players utilize. If an arbitrary player were to know this

parameter ex ante, they could maximize their expected payoff accordingly. However,

given the nature of statistical estimation, such parameter point estimates are un-

known prior to experimentation and are susceptible to error afterward. Therefore, we

consider the normal form game as a decision problem from the perspective of an arbi-

trary player who is uncertain of opponents’ reasoning ability. Assuming such a player

is confronting a set of boundedly rational opponents whose play is characterized by

the Cognitive Hierarchy model, we develop a suite of six mathematical programming

formulations to maximize the player’s minimum payoff, and we identify the appro-

priate formulation for the level of information regarding an opponent population’s

reasoning ability. By leveraging robust optimization, stochastic programming, and

distributionally robust optimization techniques, our set of models yields prescriptive

strategies of play in a normal form game. A software package implementing these

constructs is developed and applied to illustrative instances, demonstrating how be-

haviorally robust strategies vary in accordance with the underlying uncertainty.
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6.1 Introduction

Game theory, the study of strategic interaction between self-interested decision-

makers, is arguably one of the most significant mathematical constructs of the 20th

Century. However, a complete understanding of one of the field’s most fundamental

question is paradoxically elusive: In a normal form setting, how should a human agent

play a game against human opponents?

An answer to this question depends on the game structure and the agent’s beliefs

about their opponents. For instance, a Nash equilibrium is a joint strategy profile such

that no player can improve their payoff by unilateral deviation. If an agent believes

their opponents to be utility maximizers who are mutually consistent (i.e., perfectly

rational), then their Nash equilibrium profile can be viewed as a prescriptive strategy

of game play (Camerer et al., 2004). Unfortunately, there exists much experimental

evidence illustrating that humans are not perfectly rational (e.g., Stahl and Wilson,

1995; Selten, 1998; Costa-Gomes et al., 2001), and that Nash equilibrium profiles are

not necessarily predictive of human strategies in games (Camerer, 2011).

Any game theoretic solution technique relying upon perfect rationality may there-

fore be unable to adequately inform how a human agent should interact with oth-

ers. While this challenge seems to imply that some other theoretical background

(e.g., McKelvey and Palfrey, 1995) must be adapted, the maximin concept is unique

among classical game theory in its resilience to the violation of the perfect rationality

assumption.

A maximin strategy is one that maximizes an agent’s minimum payoff over all

possible combinations of opponents’ strategies. In many game theoretic texts, the

importance of the maximin solution concept is conveyed via its relation to the Nash

equilibrium. Namely, by utilizing the results set forth by von Neumann (1928) it

can be observed that a maximin strategy in a two-player, zero sum game is a Nash
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equilibrium. Similar results have recently been generalized to a special form of n-

player games: zero-sum polymatrix games (Cai et al., 2016). However, the maximin

concept is interesting in its own right as a robust strategy that guards against a

worst case outcome. It does not make any assumption regarding the psychology of

an agent’s opponents and, for this reason, is resilient to rationality violations. The

tradeoff for this resilience is that the maximin strategy may guard against improbable

oppositional action and provide an overly conservative strategy.

In operations research, robustness has been utilized as a “decision criteri[on] other

than optimality” (Lempert and Collins, 2007). It is useful to do so when model

parameters and/or the problem structure is uncertain. As uncertainty regarding

either parameters or structure may significantly affect whether an a priori identified

solution is, in fact, optimal, robustness is used as a safeguard to ensure a solution is

prescribed that performs well across a range of problem instantiations.

Of particular interest to this research, solutions resilient to parameter value changes

in a mathematical program can be found utilizing robust optimization, stochastic pro-

gramming, or distributionally robust optimization approaches, depending upon the

nature of the parametric uncertainty (Bertsimas et al., 2011). Within a robust opti-

mization (RO) context, the uncertainty associated with parameter values in a math-

ematical program is characterized via uncertainty sets. These uncertainty sets can

assume a variety of forms (e.g., finite, interval-based, polyhedral); however, they all re-

frain from utilizing probabilistic information (Goerigk and Schöbel, 2016). Generally

speaking, research in RO seeks to identify a reformulation of the original mathemat-

ical program that incorporates parameteric uncertainty (i.e., a robust counterpart)

and provides a “worst-case” solution that is always feasible and performs well with

respect to the objective function.

Stochastic programming (SP) is applied in a similar context, but it assumes that
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there exists a probability distribution over the uncertainty set. By allowing for in-

feasibility of some parameteric instantiations, SP methods leverage the probabilistic

information via the expected value operator to identify solutions that are of high

quality and feasible in expectation.

By contrast, distributionally robust optimization (DRO) can be viewed as a “ro-

bust” generalization of SP wherein a set of probability distributions (i.e., an ambiguity

set) over the uncertainty set is considered. As with uncertainty sets, ambiguity sets

may be characterized in a variety of manners (e.g., moment-based, polytopic) and,

akin to RO, DRO guards against a worst-case instantiation. Such a solution is of high

quality and feasible in expectation for any possible distribution in the ambiguity set

(Gabrel et al., 2014).

In game theory, uncertainty with respect to payoffs has been addressed in multiple

ways. For example, games having uncertain payoffs characterized in terms analogous

to either RO or SP were explored by Aghassi and Bertsimas (2006) and Harsanyi

(1967), respectively. Likewise, uncertainty is considered in games of imperfect infor-

mation. Solution concepts, in any of these settings, also assume players seek robust

strategies.

Conversely, it is assumed herein that the game’s uncertainty derives not from

the potential payoffs (i.e., these are assumed known) but from the human oppo-

nents’ respective mental frameworks. These adversaries are boundedly rational, and

their behavior cannot be predicted perfectly. When playing a normal form game in

this setting, it is desirable to adopt a strategy that performs well against such uncer-

tainty. The maximin strategy is one such robust strategy to hedge against opponents’

bounded rationality; however, as previously noted, it may be overly conservative. To

address such uncertainty, this work introduces a suite of mathematical programs

that collectively modify a player’s maximin strategy to account for variable oppo-
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nent rationality by adapting the Cognitive Hierarchy (CH) model of Camerer et al.

(2004) to robust optimization, stochastic programming, and distributionally robust

optimization settings, alternatively. In this way, we are able to leverage behavioral

game theory and multiple optimization sub-disciplines, thereby contributing to the

emerging literature of behavioral robustness in games (Brown et al., 2014; Nguyen

et al., 2016a,b). The CH model is a behavioral construct describing players by the

number of steps of strategic thought they are able to compute of the form described

by Schelling (1960): “He thinks we think he thinks we think... he thinks we think

he’ll attack; so he thinks we shall; so he will; so we must”. CH is an effective tool for

modeling human behavior in normal form games (Camerer et al., 2004; Rogers et al.,

2009; Georganas et al., 2015) and is supported by neuroscientific research detailing

correlation between brain activity and differing types of strategic thought predicted

by the CH model (Bhatt and Camerer, 2005; Camerer et al., 2005; Bhatt et al., 2010;

Coricelli and Nagel, 2009).

In this research, we analyze a game not as a holistic system, as is traditionally

considered in the literature, but as a decision problem from the perspective of an

arbitrary player. This perspective aligns our work with the contemporary focus of

the study of games in artificial intelligence, wherein supervised learning techniques are

utilized to inform an agent’s preferred strategy (e.g., Moravč́ık, Matej and Schmid,

Martin and Burch, Neil and Lisý, Viliam and Morrill, Dustin and Bard, Nolan and

Davis, Trevor and Waugh, Kevin and Johanson, Michael and Bowling, Michael ,

2017). However, our research is distinct in that a preferred strategy is developed

through behavioral theories versus supervised learning techniques, and uncertainty is

explored through uncertainty or ambiguity sets instead of experimentation.

The remainder of this chapter is structured as follows. Section 6.2 reviews the CH

modeling framework and formally defines the requisite terminology for the mathemat-
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ical programming formulations presented in successive sections. Section 6.3 provides

mathematical programming formulations to find maximin strategies in robust opti-

mization, stochastic programming, and distributionally robust optimization settings,

respectively, considering either finite or interval-based uncertainty sets for a scenario-

defining CH model parameter. Section 6.4 introduces the software package developed

for these situations and applies it to multiple games in order to illustrate the effect

of uncertainty on behaviorally robust play. Finally, Section 6.5 discusses the implica-

tions of this research and its potential for broader application.

6.2 Review of the Cognitive Hierarchy Model

Selten (1998) argued that “the natural way of looking at game situations...is not

based on circular concepts, but rather on a step-by-step reasoning procedure”. Fur-

thermore, Schelling (1960) referred to the naturalness of this reasoning structure with

regard to the “reciprocal fear of surprise attack”, and he noted that it could be for-

malized using a potentially infinite set of probabilities composed of the products of

the following event probabilities and their reciprocals: P1 (i.e., the probability the

opponent prefers to attack), P2 (i.e., the probability opponent thinks we prefer to

attack), P3 (i.e., the probability opponent thinks I believe they prefer to attack), and

so on. In Schelling’s estimation, “the trouble with the formulation is that nothing

generates the series” and that “each probability is an ad hoc estimate” (Schelling,

1960).

Camerer et al. (2004) reinterpreted this concept of step-by-step reasoning into a

tractable form with the development of the Cognitive Hierarchy model for normal

form games. Their work reinforced the hypothesis of Selten (1998) regarding the

human use of sequential logic in strategic interaction via a myriad of experiments

illustrating the CH model’s goodness of fit to empirical data from human-subject
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testing.

Within the CH modeling framework, players are assumed to be defined both

by the number of reasoning steps they use to select an action and by their beliefs

regarding the number of steps utilized by other players. It is assumed that players are

overconfident; they do not realize their opponents may use an equivalent or greater

number of reasoning steps (i.e., a k-step player believes all others are (k-1)-step

players or below). The behavior of a group of boundedly rational players is computed

recursively starting with 0-step players up to some large k-value (kmax). Camerer

et al. (2004) assumed 0-step players do not think strategically and adopt a strategy

that randomizes uniformly over their action space, 1-step players compute responses

assuming all opponents are 0-step thinkers, and so on.

A game is characterized within the CH framework by some true probability dis-

tribution on the number of reasoning steps players utilize. The Poisson distribution

with mean τ is generally used, and its conventional adoption within CH is supported

by the empirical testing conducted by Camerer et al. (2004). A high value of τ indi-

cates players use more reasoning steps, on average. Since players are overconfident,

they cannot perceive this true distribution. As such, each k-step player forms their

subjective beliefs of encountering an h-step player (h < k) as follows:

gk(h) =
fτ (h)∑k−1
l=0 fτ (l)

=
τhe−τ

h!∑k−1
l=0

τ le−τ

l!

=
τh

h!∑k−1
l=0

τ l

l!

(42)

where fτ (h) is the true probability of an h-step player being encountered from the

underlying Poisson distribution with rate τ . With this information, a player’s action

is selected to maximize their expected payoff. More formally, player i chooses an

action j such that sji maximizes
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Ek[π(sji )] =

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

gk(h)Ph(s
j′

−i)

]
(43)

where Ek[π(sji )] is player i’s expected payoff for playing action j, given player i is a

k-step player; π(sji , s
j′

−i) is player i’s payoff for selecting action j when his opponents

collectively play the action vector j′; m−i is the number of possible opponent action

vectors; and Ph(s
j′

−i) is the probability that h-step players commit to the action vector

j′. A k-step player adopts the pure strategy that maximizes their expected payoff. If

multiple actions are found to achieve the same maximum payoff, a player is assumed

to utilize a strategy that randomizes equally among them.

Therefore, the CH model formalizes the sequential reasoning process into a tractable

form by limiting its depth and forcing convergence as k increases. When k grows

sufficiently large relative to τ , the actions of a k-step and a (k+1)-step player are

indistinguishable; the players have the same beliefs and adopt the same strategy. As

such, given a specific τ , the model can be solved by recursively solving equation (43),

selecting a best response, and iterating across players until a sufficiently large k-value

(kmax) is reached. This recursive nature makes the assumed actions of 0-step players

foundational to the analysis and results of the CH model. Alternative assumptions

for 0-step player actions have been utilized in recent work (e.g., Chong et al., 2016);

however, in this research we utilize the assumptions associated with the original CH

model and set aside consideration of such alternative frameworks for future research.

6.3 Behaviorally Robust Strategies in Normal Form Games

We utilize the CH model to modify the maximin strategy such that a player of

interest can select a high quality strategy given their beliefs regarding the strategic

thinking ability of the population from which their opponent(s) derive. As noted by
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Camerer et al. (2004), “if the Poisson-CH model is correct for a given game, then the

best response the theory dictates corresponds to what the highest-step thinkers do”.

Therefore, if τ were known a priori, the player of interest would need only to run

the CH model and adopt the strategy chosen by an M -step thinker, where M is a

sufficiently large integer to observe convergence in successive step thinkers’ strategies.

In practice, τ is likely unknown to a player beforehand since it must be estimated

from observed data. Fortunately, Camerer et al. (2004) showed τ to exhibit reasonable

regularity patterns such that one can reasonably bound its value a priori within some

uncertainty set, U(τ). With this information, an M -step player i no longer associates

a scalar payoff EM [π(sji )] with action sji but a set of payoffs for each τ ∈ U(τ), where

EM [π(sji ), τ ] =

m−i∑
j′=1

π(sji , s
j′

−i)

[
M−1∑
h=0

gM(h, τ)Ph(s
j′

−i, τ)

]
, ∀τ ∈ U(τ), (44a)

=

m−i∑
j′=1

π(sji , s
j′

−i)

[
M−1∑
h=0

τh

h!
Ph(s

j′

−i, τ)∑M−1
l=0

τ l

l!

]
, ∀τ ∈ U(τ), (44b)

since player i’s subjective beliefs about both encountering h-step players, gM(h, τ),

and their opponents use of the action vector j′, Ph(s
j′

−i, τ), depend upon τ .

Consider the column player’s choice in game 10 from the Stahl and Wilson (1995)

data set as depicted in Table 24. If it is assumed that this player is unaware of previous

testing on the game, and they utilize the point estimate for new games provided

by Camerer et al. (2004) of τ = 1.5, their calculated best response is sBcol (i.e., B)

because it yields the largest expected payoff of EM [π(sBcol)] = 35.5. Conversely, Figure

33 illustrates the expected payoff associated with each action and τ -value should the

player assume τ is uncertain but exists within U(τ) = {0, 0.025, 0.05, ..., 12}. Whereas

the column player could select an alternative uncertainty set, a subset of the interval

[0, 12] is selected for illustration because it contains the τ estimates from Camerer
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et al. (2004) across the 12 games tested by Stahl and Wilson (1995).

Table 24. Game 10 from Stahl and Wilson (1995)

T M B
T (45,45) (50,41) (21,40)
M (41,50) (0,0) (40,100)
B (40,21) (100,40) (0,0)

It can be observed from Figure 33 that the consideration of the underlying un-

certainty regarding τ complicates the column player’s decision. There does not exist

a dominating single action across all levels of τ ∈ U(τ). For the set of intervals

{[0,0.30], [0.625,2.425], [2.925,2.975], [3.475,4.275], [6.1,6.225]} action sBcol is the best

response, whereas sTcol yields the greatest expected payoff otherwise.

According to the analysis of Camerer et al. (2004), the empirical data for this

game collected by Stahl and Wilson (1995) yields an estimate of τ = 11.33. As shown

in Figure 33, a column player selecting a best response of sBcol for a point estimate of

τ̂ = 1.5 would attain the least expected payoff when τ = 11.33. Therefore, to prescribe

a strategy when τ is uncertain, it is desirable to utilize all available information

regarding τ to reduce the likelihood of such unfavorable outcomes.

To do so, we first note that, for a known τ -value, player i’s optimal strategy in

accordance with the CH model can be written as Problem Q:

Q : max
PM (sji )

mi∑
j=1

PM(sji )EM [π(sji )] (45a)

subject to

mi∑
j=1

PM(sji ) = 1, (45b)

PM(sji ) ≥ 0, j = 1, ...,mi, (45c)

wherein the decision variables PM(sji ) determine player i’s strategy, possibly mixed,
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Figure 33. M-step Column Player Expected Payoffs in Stahl & Wilson Game 10

among the mi available actions.

With an unknown τ -value, the uncertainty in problem Q stems from two col-

lections of intermediate parameters in equation (44a). Both player i’s perceived

probability of encountering h-step players, gM(h, τ), and the probability player i’s

opponents will collectively select action vector j′ when utilizing h-steps of thought,

Ph(s
j′

−i, τ), are uncertain because they are functions of τ . Whereas these terms can be

combined into a single uncertain parameter, as depicted in equation (44b), it is use-

ful to represent each intermediate parameter individually for the development of the

ensuing mathematical programs since they behave differently across τ -values. More

specifically, as discussed in Section 6.3, gM(h, τ) is continuous whereas Ph(s
j′

−i, τ) is a

step function.

In the remainder of this section we illustrate that, if player i can characterize

the uncertainty around τ , then behaviorally robust strategies for the game can be

developed. Associated with a Poisson distribution, the non-negative parameter τ is
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assumed to be bounded above by T , a sufficiently large real number1, in accordance

with the empirical evidence published by Camerer et al. (2004). Moreover, because

τ ∈ [0, T ] is a unidimensional parameter, its associated uncertainty set, U(τ), is

considered to be either finite or interval-based.

For both of these scenarios, we illustrate how varying levels of knowledge about

these uncertainty sets can be incorporated into strategy development. We provide

RO formulations to select maximin strategies when probabilistic information about τ

is unknown, SP formulations when a probability distribution over the uncertainty set

is available, and DRO formulations when an ambiguity set of probability distributions

is available.

Finite Uncertainty Set over τ .

If U(τ) is assumed to be some finite subset of [0, T ], then Problem Q can be

reformulated for RO, SP, and DRO. For such a finite uncertainty, the CH model

should be run iteratively for each τ ∈ U(τ) to identify the associated parameters

(i.e., gk(h, τ) and Ph(s
j′

−i, τ)) and inform the corresponding optimization model. As

such, for a robust optimization framework and a finite uncertainty set U(τ), Problem

Q can be transformed to its robust counterpart Problem R1:

R1 : max
v,PM (sji )

v (46a)

subject to

mi∑
j=1

PM(sji )EM [π(sji ), τ ] ≥ v, ∀τ ∈ U(τ), (46b)

mi∑
j=1

PM(sji ) = 1, (46c)

PM(sji ) ≥ 0, j = 1, ...,mi, (46d)

1M should be selected such that Ek[π(sji ), τ ] has approximately converged in k when τ = T (i.e.,
fτ (k) are sufficiently small for k > M).
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wherein v represents the minimum payoff associated with a strategy over all τ ∈ U(τ).

The formulation is linear and, when solved to optimality, identifies a strategy PM(sji )

that maximizes the lower bound v.

However, Problem R1 does not incorporate any probabilistic information regarding

U(τ) and, in situations where this information is available, Problem R1 may identify

solutions which are overly conservative. For example, Camerer et al. (2004) found

that τ ∈ [1, 2] characterized empirical behavior in a large density of their experiments.

If this information is utilized by player i to inform the estimation of a probability

distribution F over U(τ), then a behaviorally optimized strategy can be found via

SP by solving Problem S1 where EF is the expectation over τ ∼ F .

S1 : max
PM (sji )

mi∑
j=1

PM(sji )EF
[
EM [π(sji ), τ ]

]
(47a)

subject to

mi∑
j=1

PM(sji ) = 1, (47b)

PM(sji ) ≥ 0, j = 1, ...,mi. (47c)

This formulation retains the general structure of R1 but leverages the proba-

bilistic information regarding τ with the expectation operator EF . For notational

consistency, the domain of PM(sji ) remains unchanged; however, we note that an

optimal solution will exist in pure strategies, i.e., where PM(sj
∗

i ) = 1 for j∗ ∈

argminj=1,...,mi
{EM [π(sji ), τ ]} and 0 otherwise.

If player i has a high degree of confidence in the probability distribution F , then

the strategy attained by optimally solving Problem S1 should be utilized. Unfor-

tunately, the formulation of Problem S1 requires a single estimate F of the true

distribution of τ over U(τ), and it does not address the effects of estimation error.
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To safeguard against estimation error, player i can instead consider an ambiguity set

F of distributions. Empirical results from the work of Camerer et al. (2004) can be

leveraged to create a moment-based ambiguity set such as

F :=

{
F :

∑
τ∈U(τ)

τpτ = c1,
∑
τ∈U(τ)
c3≤τ≤c4

pτ ≥ c2

}
, (48)

wherein pτ is the probability that some τ in U(τ) is the true Poission distribution

parameter, c1 is the identified mean of the unknown distribution (e.g., 1.5 as refer-

enced previously), and c2 ∈ [0, 1] is some pre-specified, lower cumulative density of

τ between [c3, c4] (e.g., [1, 2] as previously discussed). Equipped with such an ambi-

guity set, a DRO variant of Problem Q having a finite set U(τ) can be constructed

by finding the distributionally robust counterpart of the bilevel program DR of the

form

DR : max
PM (sji )

min
F∈F

EF

[
mi∑
j=1

PM(sji )EM [π(sji ), τ ]

]
(49a)

mi∑
j=1

PM(sji ) = 1,

PM(sji ) ≥ 0, j = 1, ...,mi.

Solving DR optimally yields the best strategy for player i, assuming the worst

possible distribution F ∈ F for each feasible strategy. A moment based ambiguity

set, as described in equation (48), is a type of polyhedral uncertainty as defined by

Bertsimas et al. (2011) and, since both the objective function and the ambiguity set

constraints are linear, the bilevel formulation can be reformulated into a single-level
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formulation by taking the dual of the lower-level minimization problem. Because

U(τ) is a finite set, the lower-level problem can be alternatively represented as

min
pτ

∑
τ∈U(τ)

pτ

[
mi∑
j=1

PM(sji )EM [π(sji ), τ ]

]

subject to
∑
τ∈U(τ)

τpτ = c1,

∑
τ∈U(τ)
1≤τ≤2

pτ ≥ c2,

∑
τ∈U(τ)

pτ = 1,

pτ ≥ 0, ∀τ ∈ U(τ),

and its dual substituted into the original program to obtain the DRO variant of

Problem Q for a finite uncertainity set U(τ), formulated as Problem DR1.

DR1 : max
PM (sji ),zr

c1z1 + c2z2 + z3

subject to τz1 + z2 + z3 ≤
mi∑
j=1

PM(sji )EM [π(sji ), τ ], τ ∈ [c3, c4],

τz1 + z3 ≤
mi∑
j=1

PM(sji )EM [π(sji ), τ ], τ /∈ [c3, c4],

mi∑
j=1

PM(sji ) = 1,

PM(sji ) ≥ 0, j = 1, ...,mi,

z2 ≥ 0,

z1, z3, unrestricted.
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This DRO formulation complements the RO and SP variants, allowing a player i to

form a behaviorally robust strategy, depending on the level of uncertainty with respect

to the parameter τ . The formulations are linear and can be solved to optimality using

any number of available commercial optimization solvers. However, these features are

made possible by the assumption that U(τ) is a finite, countable set.

Should the assumption of a finite uncertainty set over τ ∈ [0, T ] not hold and

the uncertainty set is instead interval-based, two options exist to identify a CH-based

strategy for player i. First, the methods for a finite uncertainty set can be leveraged as

heuristics. Subject to the availability of computational resources, a high granularity

of finite values for τ ∈ [0, T ] can be examined within Problems R1, S1, or DR1,

accordingly. We implement such a procedure in the BRMaximin toolbox discussed

in Section 6.4. Alternatively, Section 6.3 presents RO, SP, and DRO formulations to

directly accommodate an interval-based uncertainty set, U(τ).

Interval Uncertainty Set over τ .

If U(τ) is an interval-based uncertainty set, analogous mathematical programming

representations can be created to form behaviorally robust strategies. However, the

finer fidelity of U(τ) is accompanied by an increase in complexity both to formulate

and solve the corresponding math programs.

We first examine how to create a behaviorally robust strategy within a RO frame-

work by considering the objective function of Problem Q,

mi∑
j=1

PM(sji )EM [π(sji ), τ ] =

mi∑
j=1

PM(sji )

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

gk(h, τ)Ph(s
j′

−i, τ)

]
.

Of the four components on the right-hand side, PM(sji ) is a decision variable, π(sji , s
j′

−i)
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is a constant, and both gk(h, τ) and Ph(s
j′

−i, τ) are uncertain intermediate parameters

of the primary uncertainty τ . As such, a solution to the RO variant of Problem Q for

an interval-based uncertainty set U(τ), is determined by the product of the functions

gk(h, τ) and Ph(s
j′

−i, τ).

Based on the assumptions of Camerer et al. (2004), for given values of k and h,

gk(h, τ) is a rational function (i.e., the quotient of two polynomials) on τ ∈ U(τ) and,

since the denominator is always defined for τ > −1, is continuously differentiable on

U(τ), though it need not be convex. Moreover, the probability player i assigns to

each opponent action vector j′ is

Ph(s
j′

−i, τ) =
∏
d6=i

Ph(s
j′d
d , τ),

where j′d is the action of each opponent d in the vector j′, and Ph(s
j′d
d , τ) is the

probability any player d utilizing h-levels of thought (h < M) assigns to action j′d. Per

the assumptions of Camerer et al. (2004), Ph(s
j′d
d , τ) can only take on a finite number

of values; more formally, Ph(s
j′d
d , τ) : U(τ) 7→ {0, 1

md
, 1
md−1

, ..., 1}. This implies that

Ph(s
j′d
d , τ) is a simple function. Likewise, since the product of simple functions is also

a simple function, the same results hold for Ph(s
j′

−i, τ).

Therefore, EM [π(sji ), τ ] is not guaranteed to be smooth or convex on U(τ) because

it is composed of the sumproduct of gk(h, τ) and Ph(s
j′

−i, τ) which are rational and

simple functions on U(τ), respectively. If only pure strategies were to be considered,

algorithms for non-smooth, non-convex unconstrained optimization, such as gradient

sampling (e.g., Burke et al., 2018) or quasi-Netwon methods (e.g., Lewis and Overton,

2013), could be applied to each action, j = 1, ...,mi, yielding the minimum values for

each EM [π(sji ), τ ] over U(τ). A RO solution in this case would be the action j∗ with

the greatest minimum value of EM [π(sji ), τ ].

Although such a procedure yields a behaviorally robust strategy, its solution is a
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special case of the RO variant of Problem Q having interval-based uncertainty since

only pure strategies are considered feasible.

A general RO formulation, that allows for mixed strategies can be modeled in-

cumbent upon Ph(s
j′

−i, τ) being not just a simple function but also a step function

having values P µ
h (sj

′

−i) over a finite number γ of intervals that cover U(τ), such that

Uµ(τ) is the closure of any such interval µ . By considering the closure we relax the

assumption that opponents mix equally over actions that yield an equivalent maxi-

mum payoff, and consider alternative supports wherein a probability of zero may be

given to some combinations of these actions. Therefore, the resulting formulation is

less sensitive to the CH assumptions and is more tractable computationally.

In this way, the RO variant of Problem Q with an interval-based U(τ) can be

written as

max
v,PM (sji )

v

subject to

mi∑
j=1

PM(sji ) = 1,[
min

τµ∈Uµ(τ)

mi∑
j=1

PM(sji )

m−i∑
j′=1

M−1∑
h=0

π(sji , s
j′

−i)gM(h, τ)P µ
h (sj

′

−i)

]
≥ v,

µ = 1, ..., γ, (50a)

PM(sji ) ≥ 0, j = 1, ...,mi.

However, since gM(h, τ) is continuous over U(τ), it is also continuous over each

Uµ(τ). Call ∆hµ
1 and ∆hµ

2 the minimum and maximum values of gM(h, τ) in some

interval Uµ(τ) for some h. These can be found using any number of unconstrained

optimization techniques (e.g., line search) for continuous functions. By the Interme-

diate Value Theorem, the resulting interval-based uncertainty set of gM(h, τ) for each
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instantiation of constraint (50a) is [∆hµ
1 ,∆hµ

2 ]. Therefore, we can consider gM(h, τ)

directly by introducing the decision variables gµM(h) to represent their worst-case val-

ues in each interval Uµ(τ). Each optimization problem embedded within constraint

(50a) can be alternatively represented as

min
gµM (h)

mi∑
j=1

PM(sji )

m−i∑
j′=1

M−1∑
h=0

π(sji , s
j′

−i)g
µ
M(h)P µ

h (sj
′

−i)

subject to gµM(h) ≥ ∆hµ
1 , h = 0, ...,M − 1, (51a)

− gµM(h) ≥ −∆hµ
2 , h = 0, ...,M − 1, (51b)

and, by taking the dual of each such formulation, in a manner similar to Problem

DR1, we can express the robust counterpart of Problem Q with an interval-based

uncertainty set U(τ) as

R2 : max
v,PM (sji ),z

hµ
1 ,zhµ2

v

subject to

mi∑
j=1

PM(sji ) = 1,

M−1∑
h=0

∆hµ
1 zhµ1 −∆hµ

2 zhµ2 ≥ v, µ = 1, ..., γ, (52a)

zhµ1 − zhµ2 =

mi∑
j=1

m−i∑
j′=1

PM(sji )π(sji , s
j′

−i)P
µ
h (sj

′

−i),

µ = 1, ..., γ, h = 0, ...,M − 1, (52b)

zhµ1 , zhµ2 ≥ 0, µ = 1, ..., γ, h = 0, ...,M − 1, (52c)

PM(sji ) ≥ 0, j = 1, ...,mi,

wherein zhµ1 and zhµ1 are the dual variables associated with constraints (51a) and
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(51b), respectively. This single level reformulation is linear and can be readily solved

utilizing a commercial solver.

However, as previously mentioned, the form of Problem R2 depends upon Ph(s
j′

−i, τ)

being a step function, a condition proven to hold in Theorem 6.3.1.

For notational ease, we define Φhi(τ) to be the upper envelope of the collection of

functions {Eh[s1
i , τ ], ..., Eh[s

mi
i , τ ]} for a given player i and level of thought h < M as

a function of τ , or

Φhi(τ) = max
j
Eh[π(sji , τ)] . (53)

As such, Ph(s
j
i , τ) > 0 for a given τ̄ ∈ U(τ) if and only if j ∈ argmax{Eh[π(sji ), τ̄ ]},

i.e., due to the assumptions of Camerer et al. (2004) regarding the selection of per-

cieved best responses.

Theorem 6.3.1 For any given action vector j′ and h < M , Ph(s
j′

−i, τ) is a step

function in τ .

Proof For any player d, action w, and h = 0, P0(swd , τ) = 1
md
∀τ ∈ U(τ), and is trivially

a step function by the assumptions of Camerer et al. (2004). Therefore, so is P0(sj
′

−i, τ) =∏
d6=i P0(s

j′d
d , τ).

Moreover, for any player d and h = 1

Φ1d(τ) = max
w

E1[π(swd , τ)] = max
w

[m−d∑
w′=1

π(swd , s
w′
−d)

]
,

implying that Φ1d(τ) has no break points, Ph(swd , τ) is a step function for w = 1, ...,md,

and P1(sj
′

−i, τ) is a step function as well.

Assume that Ph(swd , τ) is step function for h = 2, ..., n. Then so is Ph(sw
′
−d, τ) =∏

ν 6=d Ph(s
w′ν
ν , τ), and it has corresponding set of intervals of Uy(τ), y = 1, ..., λy covering

U(τ). Given gk(h, τ) is a continuous, rational function on U(τ) for a given h, at h = n+ 1

we have
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En+1[π(swd ), τ ] =

m−d∑
w′=1

n∑
h=0

π(swd , s
w′
−d)gn+1(h, τ)Ph(sw

′
−d, τ)

piecewise continuous in U(τ), and a rational function on each Uy(τ).

Call D the set of degenerate Uy(τ) intervals. If τ ∈ Uy(τ) ⊆ D, then Φhd(τ) is found via

equation (53) and, as such, Pn+1(swd , τ) = βwd (y) = 1
|W ∗| for w ∈ W ∗ and zero otherwise,

where W ∗ is the set of actions with an expected payoff defining Φhd(τ).

Call N the set of non-degenerate Uy(τ) intervals. If τ ∈ Uy(τ) ⊆ N , we note the

following. For any two actions, w1 and w2, we can write En+1[π(sw1
d ), τ ] = D1(τ)

D2(τ) and

En+1[π(sw2
d ), τ ] = D3(τ)

D4(τ) , where Dδ(τ) are each polynomials of order Ḋδ. The points of

intersection of these two functions can be found by solving

En+1[π(sw1
d ), τ ]− En+1[π(sw2

d ), τ ] =
D1(τ)D4(τ)−D2(τ)D3(τ)

D2(τ)D4(τ)
= 0.

D2(τ)D4(τ) has no zeros in U(τ) since gk(h) is always defined in this domain. D1(τ)D4(τ)−

D2(τ)D3(τ) is another polynomial with order no greater than max{Ḋ1 + Ḋ4, Ḋ2 + Ḋ3} by

the Fundamental Theorem of Algebra. Assuming En+1[π(sw1
d ), τ ] − En+1[π(sw2

d ), τ ] does

not equal the zero function (i.e., w1 6= w2), then it has a maximum number of zeros equal

to the order of D1(τ)D4(τ)−D2(τ)D3(τ).

Therefore, within any Uy(τ) ∈ N , there exists a finite number of intersections among

the set of functions {En+1[π(swd ), τ ]}, implying Φ(n+1)d(τ) has a finite number of intervals

within which some set of actions W ∗ defines the upper envelope and Pn+1(swd , τ) is some

constant. That is, ∀Uy(τ) ∈ N , there exists a finite number λy of intervals Uyr(τ) that

cover Uy(τ) and wherein each Pn+1(swd , τ) equals some constant βwd (y, r)

Collectively, these results allow Pn+1(swd , τ) to be written as

Pn+1(swd , τ) =

 ∑
Uy(τ)∈N

λy∑
r=1

βwd (y, r)Iyr

+

 ∑
Uy(τ)∈D

βwd (y)Iy
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wherein Iy and Iyr are indicator functions for the intervals Uy(τ) and Uyr(τ), respec-

tively. Therefore, Pn+1(swd , τ) is a step function, and so is their product Pn+1(sj
′

−i, τ) =∏
d6=i Pn+1(s

j′d
d , τ). �

In this way, the uncertainty pertaining to intermediate parameter Ph(s
j′

−i, τ) can

be handled explicitly by partitioning U(τ) into the appropriate intervals wherein it

is constant. In practice, these intervals can be found by repeatedly finding the upper

envelopes in τ of each player’s payoff functions for a given action, opponent action

and level of thought, and recording for which τ -values we have Ph(s
j′

−i, τ) > 0.

The results from Theorem 6.3.1 are also useful in formulating the SP variant of

Problem Q with an interval-based U(τ), which we denote as S2:

S2 : max
PM (sji )

mi∑
j=1

PM(sji )EF
[
EM [π(sji ), τ ]

]
subject to

mi∑
j=1

PM(sji ) = 1,

PM(sji ) ≥ 0, j = 1, ...,mi.

We note that S2 has the same general form as S1. However, we can leverage the

fact that τ is a continuous random variable and the piecewise form of Ph(s
j′

−i, τ) to

simplify the objective function per the following theorem.

Theorem 6.3.2 For τ distributed by an arbitrary, continuous probability distribution

function f(τ) over U(τ), we have

EF
[
EM [π(sji ), τ ]

]
≈

m−i∑
j′=1

M−1∑
h=0

γ∑
µ=1

π(sji , s
j′

−i)P
µ
h (sj

′

−i)

∫
Uµ(τ)

f̂(h, τ)f(τ)dτ

where f̂(h, τ) is a gamma probability density function with rate parameter β = 1 and

shape parameter α = h+ 1.
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Proof By properties of the expectation operator, we can write

EF
[
EM [π(sji ), τ ]

]
=

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

EF
[
gk(h, τ)Ph(sj

′

−i, τ)
]]

Since gk(h, τ)Ph(sj
′

−i, τ) is a piecewise continuous function it can be written as

gk(h, τ)Ph(sj
′

−i, τ) =

γ∑
µ=1

Iµ
τhe−τ

h!(∑M−1
l=0

τ le−τ

l!

)Pµh
where Iµ is the characteristic function associated with the interval Uµ(τ). The denominator

in the summand is the sum of Poisson probability mass functions and, when M → ∞, it

converges toward 1. Therefore, for a sufficiently large M (relative to τ) we can write

gk(h, τ)Ph(sj
′

−i) ≈
γ∑

µ=1

Iµ
τhe−τ

h!
Pµh ,

and

EF
[
gk(h, τ)Ph(sj

′

−i, τ)
]
≈

γ∑
µ=1

Pµh

∫
Uµ(τ)

τhe−τ

h!
f(τ)dτ

≈
γ∑

µ=1

Pµh

∫
Uµ(τ)

f̂(h, τ)f(τ)dτ,

where f̂(h, τ) is a gamma probability density function with rate parameter β = 1 and shape

parameter α = h+ 1. �

The results of Theorem 6.3.2 faciliate the computation of the expected payoff

associated with each action j. Since the integral considers the product of two density

functions, f̂(h, τ) and f(τ), a modeler is potentially able to simplify it. After these

integrals are solved and EF
[
gk(h, τ)Ph(s

j′

−i, τ)
]

is found, S2 becomes a simple linear
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program with an optimal solution yielding a behaviorally robust strategy in a SP

setting.

The combination of Theorems 6.3.1 and 6.3.2 also proves useful for developing dis-

tributionally robust maximin strategies with an interval-based U(τ). Such a problem

utilizing the same ambiguity set F from Section 6.3 can be represented as DR. How-

ever, the results of this section allow for the development of a tractable approximate

DRO counterpart that converges toward the exact DRO counterpart as parameters

θ → 0 and M →∞.

Utilizing the properties of expectation and Theorems 6.3.1 and 6.3.2, the objective

function (49a) can be written as

EF
[ mi∑
j=1

PM(sji )EM [π(sji ), τ ]
]

=

mi∑
j=1

PM(sji )

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

EF
[
gk(h, τ)Ph(s

j′

−i, τ)
]]

≈
mi∑
j=1

PM(sji )

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

γ∑
µ=1

P µ
h

∫
Uµ(τ)

f̂(h, τ)f(τ)dτ

]
.

We define Ub(τ) to be a finite set of γ̇ closed intervals of the form [ab1, ab2] covering

U(τ) that is at least as fine as the set of Uµ(τ) (i.e., γ̇ ≥ γ) such that a11 = min[U(τ)],

aγ̇2 = max[U(τ)], and ab2 = a(b+1)1 for b < γ̇. Moreover, we assume each Ub(τ) is

of equal length θ and all endpoints of Uµ(τ) correspond to endpoints among the γ̇

intervals. This property implies that all non-degenerate Uµ(τ) interval lengths are

multiples of θ (i.e., ∀µ ∃n ∈ N such that len(Uµ(τ)) = nθ where len(·) is the length

function).

Once a θ-value is set and Ub(τ) determined, we utilize them to approximate the

ambiguity set F . That is, we consider all stepwise probability distribution functions
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(i.e., histograms) with intervals Ub(τ). Therefore, it is clear that as θ → 0, our

approximate ambiguity set converges to F . Since within each Ub(τ) the distribution

f(τ) is a constant yb, we can write

γ∑
µ=1

P µ
h

∫
Uµ(τ)

f̂(h, τ)f(τ)dτ =

γ̇∑
b=1

P
Ub(τ)
h yb

∫
Ub(τ)

f̂(h, τ)dτ

=

γ̇∑
b=1

P
Ub(τ)
h ybΩ(h, Ub(τ))

where P
Ub(τ)
h = P µ

h for Ub(τ) ⊆ Uµ(τ), Ω(h, Ub(τ)) = F̂ (h, ab2)−F̂ (h, ab1), and F̂ (h, τ)

is the gamma cumulative distribution function with α = h+ 1 and β = 1 for τ .

With this knowledge, Problem DR can be approximated as

max
PM (sji )

min
yb

mi∑
j=1

PM(sji )

m−i∑
j′=1

π(sji , s
j′

−i)

[
k−1∑
h=0

γ̇∑
b=1

P
Ub(τ)
h ybΩ(h, Ub(τ))

]
mi∑
j=1

PM(sji ) = 1,

PM(sji ) ≥ 0, j = 1, ...,mi,

γ̇∑
b=1

(ab1 + ab2
2

)
yb = c1, (55a)

∑
c3≤ab1≤c4

θyb ≥ c2,

γ̇∑
b=1

θyb = 1,

yb ≥ 0.

provided that θ has been selected such that c3 and c4 are endpoints to some interval

Ub(τ). This qualification is only necessary to ensure the correct calculation of con-
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straint (55a) and only relevant when the ambiguity set considers the dispersion of its

distributions.

Since all functions are linear, this bilevel program can be reformulated by tak-

ing the dual of the lower-level decisionmaker’s problem. The resulting single level

formulation is denoted as Problem DR2.

DR2 : max
PM (sji ),zk

c1z1 + c2z2 + z3

subject to
(ab1 + ab2

2

)
z1 + θ(z2 + z3) ≤

mi∑
j=1

PM(sji )χ
j
ib,

∀b : ab1 ∈ [c3, c4],(ab1 + ab2
2

)
z1 + θz3 ≤

mi∑
j=1

PM(sji )χ
j
ib,

∀b : ab1 /∈ [c3, c4],

z2 ≥ 0

z1, z3, unrestricted.

where

χjib =

m−i∑
j′=1

π(sji , s
j′

−i)

[
M−1∑
h=0

P
Ub(τ)
h Ω(h, Ub(τ))

]

This formulation is an approximate distributionally robust counterpart for the

ambiguity set F that converges to the true counterpart as θ → 0 and M → ∞.

Moreover, it allows player i to form a behaviorally robust strategy in a DRO setting

with an interval-based U(τ) via the solution of a linear program.
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6.4 Behaviorally Robust Strategies for the Stahl & Wilson Games

The appropriate behaviorally robust strategy varies based upon the information a

player has available regarding the parameter τ . This section examines such strategy

alterations for the twelve games provided by Stahl and Wilson (1995) and tests them

on their human-subject data.

We developed the BRMaximin toolbox and utilized it on these examples. This

software package includes a suite of MATLAB functions that implements the base-

line Cognitive Hierarchy model, plots all EM [π(sji ), τ ] functions (i.e., belonging to

each action j) for a game across an uncertainty set, and identifies behaviorally robust

strategies for a finite or interval-based U(τ) in a RO, SP and DRO setting, respec-

tively. For each function, the input required consists of a payoff matrix, uncertainty

information, and an M -value. For model variants having interval-based uncertainty

sets, the BRMaximin toolbox leverages a discrete mesh approximation (with user-

defined spacing) over the region for the purpose of computational tractability and,

for SP2, uses a beta distribution due to its bounded continuous nature and flexibility

of shape. The software package and related documentation are available on both the

MATLAB File Exchange2 and GitHub3.

The Twelve Stahl & Wilson Games.

The twelve games utilized by Stahl and Wilson (1995) are symmetric matrix games

wherein each player has three available actions (i.e., T , M , andB). Game 10 of this set

is presented in Table 24. Stahl and Wilson (1995) conducted human-subject testing

on each game wherein 48 individuals adopted the role of the row player. Moreover,

Camerer et al. (2004) utilized the same data in their original testing of the Cognitive

Hierarchy model.

2URL: https://www.mathworks.com/matlabcentral/fileexchange/71117-brmaximin
3URL: https://github.com/caballerown/BRMaximin
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For varying information sets regarding τ and for each of these twelve games,

we identify the column player’s strategies prescribed by the appropriate model from

Section 6.3. We subsequently evaluate the performance of these six strategies, as well

as the strategy that would be prescribed by Camerer et al. (2004) under an assumption

that the point estimate of τ = 1.5 is correct, against the responses of the 48 individuals

tested by Stahl and Wilson (1995). The specifications of the information conditions

considered for each game are presented in Table 25.

Table 25. Seven information conditions for Stahl & Wilson games

Information Condition Assumptions on true τ -value
PE τ = 1.5
R1 τ ∈ U1(τ) = {0, 0.5, 1, 1.5, 2, 2.5, 3}
S1 Distribution F over U1(τ); (p0, p0.5, p1, p1.5, p2, p2.5, p3) = (0.02, 0.1, 0.15, 0.46, 0.15, 0.1, 0.02)

DR1 Collection of discrete distribution F over U1(τ) with c1 = 1.5, c2 = 0.5, c3 = 1, and c4 = 2
R2 τ ∈ U2(τ) = [1, 12]
S2 τ ∼ Beta(10, 75) over U2(τ)

DR2 Collection of continuous distributions F over U2(τ) with c1 = 1.5, c2 = 0.5, c3 = 1, and c4 = 2

These information conditions are selected to illustrate the effect an agent’s knowl-

edge regarding τ can have on their behaviorally robust strategy. The condition PE

utilizes the point estimate provided by Camerer et al. (2004) without quantifying the

uncertainty from which it was derived. Condition R1 examines the effect of a small,

finite uncertainty set; condition S1 considers a probability distribution over this set

with mean 1.5; and condition R1 considers all ambiguity sets over the uncertainty

with mean 1.5 and at least 50% of their density lying within [1,2]. Conditions R2,

S2, and DR2 similarly examine these different forms of uncertainty but on a larger,

interval-based uncertainty set for τ . Setting M = kmax = 40 and using a mesh spacing

of 0.025 for the interval-based instances, the resulting behaviorally robust strategies

for the BRMaximin toolbox functions are reported in Table 26.

The degree to which the information condition affects the resulting strategy varies

by game. In Game 1, every prescribed strategy corresponds to the (unique) maximin

strategy; the solutions do not differ by information condition. However, the solutions
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Table 26. Prescribed mixed strategies for all Stahl & Wilson games

Game PE R1 S1 DR1 R2 S2 DR2
1 (0, 1, 0)* (0, 1, 0)* (0, 1, 0)* (0, 1, 0)* (0, 1, 0)* (0, 1, 0)* (0, 1, 0)*
2 (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0.91, 0.09, 0) (0, 1, 0) (0.37, 0.63, 0)
3 (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
4 (0, 1, 0) (0.34, 0.66, 0) (1, 0, 0) (0.29, 0.71, 0) (0.62, 0.38, 0) (1, 0, 0) (0.33, 0.67, 0)
5 (0, 0, 1)* (0.75, 0, 0.25) (0, 0, 1)* (0, 0, 1)* (0, 0, 1)* (0, 0, 1)* (0, 0, 1)*
6 (0, 1, 0)* (0.53, 0.47, 0) (0, 1, 0)* (0.39, 0.61, 0) (0, 1, 0)* (0, 1, 0)* (0.32, 0.68, 0)
7 (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 0.30, 0.70)* (1, 0, 0) (0.65, 0, 0.35)
8 (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 0.10, 0.90) (0, 1, 0) (0, 1, 0) (0, 0, 1)
9 (0, 0, 1) (0.54, 0, 0.46) (0, 0, 1) (0.50, 0, 0.50) (0.56, 0, 0.44) (0, 0, 1) (0.54, 0, 0.46)
10 (0, 0, 1) (1, 0, 0) (0, 0, 1) (0.97, 0, 0.03) (1, 0, 0) (0, 0, 1) (1, 0, 0)
11 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.30, 0.59, 0.11)* (0, 0, 1) (0, 0.04, 0.96)
12 (1, 0, 0) (0.90, 0, 0.10) (1, 0, 0) (0.36, 0, 0.64) (1, 0, 0) (1, 0, 0) (0.34, 0, 0.66)

* Strategy coincides with Maximin solution

to other games illustrate variability based on uncertainty conditions (e.g., Game 4).

One factor driving this behavior derives from the form of the EM [π(sjcol), τ ] functions

in each game. Consider each of these functions for games 1, 4, and 10, as graphed

in Figures 34, 35 and 33. In both Figures 1 and 3, the expected payoff functions

exhibit multiple discontinuities and, within each figure, the upper envelopes of the

the set of functions corresponds to different strategies over multiple, disjoint intervals.

In contrast, the upper envelope in Figure 34 is defined by a much simpler piecewise

continuous function. The best expected outcome is EM [π(sTcol), τ ] from τ = [0, 0.125]

and EM [π(sMcol), τ ] elsewhere. Thus, the information conditions regarding τ have a

notable effect on prescribed strategies for Games 4 and 10 and no effect on prescribed

strategies for Game 1.

Table 27 reports the worst, average, and best performance of the respective column

player strategies prescribed in Table 26 for all 12 games, considering as opponents the

responses of the 48 players tested by Stahl and Wilson (1995). For each game, Table

27 also reports the regressed τ -values from Camerer et al. (2004) (i.e., τ̂) as well as

the payoff statistics for both the CH model’s best response (BR) strategy with the

regressed τ̂ and the standard maximin (MM) strategy. These results highlight the

effect a player’s understanding of the opponent population can have on their expected
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Figure 34. M-step Column Player Expected Payoffs in Stahl & Wilson Game 1

Figure 35. M-step Column Player Expected Payoffs in Stahl & Wilsom Game 4
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payoff. As some of the column player’s prescribed strategies are probabilistic, the

results are reported in terms of their expected payoff against this set of opponents.

Table 27. Descriptive expected payoff statistics versus 48 Stahl & Wilson players

Game τ̂ Statistic BR MM PE R1 S1 DR1 R2 S2 DR2

1
Min 40 40 40 40 40 40 40 40 40

2.93 Avg 44.69 44.69 44.69 44.69 44.69 44.69 44.69 44.69 44.69
Max 65 65 65 65 65 65 65 65 65

2
Min 15 41.54 15 15 15 15 37.66 15 24.19

0 Avg 60 62.21 60 60 60 60 62.27 60 60.92
Max 100 74.61 100 100 100 10 74.53 100 79.79

3
Min 35 35 35 35 35 35 35 35 35

1.40 Avg 45.31 45.21 45.31 45.31 45.14 45.31 45.31 45.31 45.31
Max 80 92.38 80 80 100 80 80 80 80

4
Min 30 37 10 36.64 30 35.70 33.83 30 36.68

2.34 Avg 46.46 39.97 37.19 40.30 46.46 39.84 42.91 46.46 40.27
Max 100 46.50 45 46.68 100 46.43 65.57 100 46.66

5
Min 20 20 20 12.44 20 20 20 20 20

2.01 Avg 47.71 47.71 47.71 38.11 47.71 47.71 47.71 47.71 47.71
Max 50 60 60 87.77 60 60 60 60 60

6
Min 25 31 31 30.47 31 30.61 31 31 30.69

0 Avg 53.65 44.73 44.73 49.44 44.73 48.16 47.73 47.73 47.55
Max 100 60 60 76.88 60 69.87 60 60 66.50

7
Min 30 47.04 30 30 30 30 46.99 30 37.08

5.37 Avg 58.96 49.09 58.96 58.96 58.96 58.96 49 58.96 57.37
Max 100 52.82 100 100 100 100 52.46 100 91.15

8
Min 20 42.86 20 20 20 38 20.01 20 40

0 Avg 55 46.65 55 55 55 49.15 54.99 55 48.50
Max 100 50.45 100 100 100 55.01 99.97 100 52

9
Min 0 57.14 0 54.26 0 49.92 55.97 0 54.33

1.35 Avg 71.77 60.58 71.77 61.14 71.77 62 60.81 71.77 61.13
Max 80 65 80 65 80 65 65 80 65

10
Min 21 28.99 0 21 0 20.34 21 0 21

11.33 Avg 42.31 40.63 38.75 42.31 38.75 42.20 42.31 38.75 42.31
Max 50 43.32 100 50 100 51.58 50 100 50

11
Min 22 35.34 20 20 20 20 35.34 20 20.95

6.48 Avg 30.67 35.34 30.90 30.90 30.90 30.90 35.34 30.90 31.18
Max 100 35.34 51 51 51 51 35.34 51 50.39

12
Min 15 37.37 15 23.57 15 33.57 15 15 33.44

1.71 Avg 50.31 48.41 50.31 49.58 50.31 45.66 50.31 50.31 45.57
Max 70 65.26 70 68.19 70 69.65 70 70 70.75

The BR strategies are unknown prior to playing the game because the regressed

τ̂ -values require empirical estimation, implying that the BR model is best utilized

as a benchmark rather than a prescriptive model in its own right. The BR model

is designed to maximize a player’s expected reward; therefore, when utilizing the

average expected payoff as a comparative metric, it does generally yield the best

results across all nine models tested. Although there are two exceptions (i.e., Games

2 and 11), we suspect these results may relate to the quality of fit of these specific

201



www.manaraa.com

τ -estimates provided by Camerer et al. (2004)4.

The MM model yields the maximum of the minimum expected payoffs across

all games, but it generally sacrifices performance with respect to both the average

expected payoff and the maximum expected payoff. The conservativeness of the MM

strategies can be observed by comparing the BR and MM columns across the average

and maximum expected payoff results in Table 27.

Regarding the PE method, we note that the average expected payoff of its strate-

gies typically do not exceed those of the BR strategies (with the exception of Game

11). This result aligns with the theory presented by Camerer et al. (2004). Likewise,

for this particular set of games and empirical play, the PE strategies often yield both

lower minimum and average expected payoffs compared to the MM strategies (i.e.,

Games 2, 4, 10, and 11).

The behaviorally robust strategies (i.e., R1 – DR2) provide compromise solutions

between the conservative MM strategies and the unknown BR strategies. The behav-

iorally robust strategies trade improved average performance for decreased minimum

performance relative to the MM strategies; however, their success in doing so depends

upon the accuracy of the underlying information conditions. Consider Game 10 with

τ̂ = 11.33. Information conditions S1 and S2 both assume a high probability of τ

existing in [1,2] and a low probability of larger τ -values. As with the PE strategy for

this game, the S1 and S2 strategies are based upon an inadequate understanding of

the underlying uncertainty and yield poor minimum and average results compared to

the BR and MM strategies. Alternatively, for Game 4, each behaviorally robust model

appropriately balances an improved average expected payoff with a reduced minimum

4For Game 2 with τ = 0, we have CHrow = (0.33, 0.33, 0.33) whereas the empirical results of Stahl
and Wilson (1995) report RSW2 = (0.625, 0.25, 0.125). Running the CH model for Game 11 with
τ = 6.48 and kmax = 6, the resulting solution is approximately equal to the empirical results, RSW11,
of Stahl and Wilson (1995). That is, CHrow = (0.27, 0.07, 0.66) ≈ RSW11 = (0.27, 0.08, 0.65).
However, at such a low value of k in relation to τ , the CH solution has not yet converged. Increasing
to kmax=50, we have CHrow = (0.47, 0.19, 0.34) at approximate convergence.

202



www.manaraa.com

expected outcome because τ̂ = 2.34 is well represented in the information conditions.

Finally, we also observe that at least one of the behaviorally robust strategies always

weakly dominates the PE strategies for each game in terms of minimum, average,

and maximum expected payoff. Of note, the DR2 strategies weakly dominate the

PE strategies in terms of average expected payoff for nine of the twelve games and

strictly dominate them for four of the twelve.

6.5 Conclusion

The bounded rationality exhibited by humans in one-shot, simultaneous-move

games is a source of uncertainty complicating the decision for a player who confronts

them. For such a player to maximize his or her utility, they must accurately assess

their opponents’ ability to think strategically. The CH model developed by Camerer

et al. (2004) provides a framework for assessing such strategic ability, but the defining

parameter τ must be identified via empirical estimation. As such, it is unlikely to be

known precisely ex ante.

Within this research, we have leveraged robust optimization, stochastic program-

ming, and distributionally robust optimization techniques to develop six mathemat-

ical programming formulations to collectively identify behaviorally robust strategies

under varying types of uncertainty regarding τ . Solutions to these math programming

formulations provide a player with a prescriptive strategy in accordance with their

knowledge and beliefs regarding their opponents.

Moreover, we also developed a software package, BRMaximin, to identify behav-

iorally robust strategies under varying forms of uncertainty and utilized these tools

to analyze the 12 games introduced by Stahl and Wilson (1995). The results illus-

trated the differing strategies obtained in accordance with a player’s understanding

of the uncertainty about τ . Likewise, we tested these strategies against the empirical
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play from the human subjects in Stahl and Wilson (1995) to demonstrate how the

accuracy of this knowledge affects a player’s actual received payoffs.

Notwithstanding these results, there exists substantial opportunity for future re-

search in this setting. One such opportunity involves revisiting the models presented

herein by varying the underlying CH assumptions. For example, specific τ -values may

be incorporated for each opponent population instead of the global opponent τ -value

utilized herein. Additional avenues for future inquiry include the modification of our

mathematical programs to other nonequilibrium structural models (e.g., Chong et al.,

2016) or the automation of exact interval-based uncertainty solution methods via a

computer algebra system. In pursuing such an agenda, researchers will be better able

to advise players on their interactions against boundedly rational opponents and fur-

ther the collective understanding of how to play normal form games against human

opponents.
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VII. Conclusions

In this research, we have developed multiple models that inform the offensive

application of and defensive measures against persuasion in a national security setting,

by way of completing five specific research goals in two related research threads.

In the first research thread pertaining to offensive and defensive behavioral influ-

ence models, an offensive modeling framework is created to identify how an entity

optimally influences a populace to take a desired course of action, a defensive mod-

eling framework is defined wherein a regulating entity takes action to bound the

behavior of multiple adversaries simultaneously attempting to persuade a group of

decisionmakers, and an offensive influence modeling framework under conditions of

ambiguity is developed in accordance with historical information limitations. In the

second research thread pertaining to behavioral and behaviorally robust approaches

to deterrence, we demonstrate the alternative insights behavioral game theory gen-

erates for military operations planning, and we define behaviorally robust models for

an agent to use in a normal form game under varying forms of uncertainty in order

to inform deterrence policy decisions.

In accomplishing these goals, we provide military and civilian planners with frame-

works to better conduct and counter political warfare, and with alternative tools to

develop deterrence policy that addresses and exploits uncertain adversarial behavior.

Moreover, whereas the efficacy of influence in international strategic competition

is well-known (Clarke, 2018; Heath, 2018; McClintock, 2018; Robinson et al., 2018),

its effectiveness is difficult to quantify (Boot and Doran, 2013). By leveraging quanti-

tative psychological theories, this research provides methods to mathematically model

these operations and, in doing so, extends this scope of operations research applica-

tions beyond conventional warfare and prepares it for future use in the age of political

warfare.
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Appendix A. Expected Utility Influence Model

The GPP can be readily adapted to alternative assumptions of an expected utility

maximizing decisionmaker. To illustrate this point, we model the persuasion problem

previously referenced as follows. Note that the i, j suffixes have been dropped for

notational convenience because there is only one decisionmaker and two prospects,

with q being equivalent to prospect B. Likewise, we assume ∆ = 0.

max Φ

subject to a2 + a3 ≤ 400

a1 ≤ 0.1

EU(A) = 250

EU(B) = (0.4 + a1)(300 + a2) + (0.6− a1)(a3)

EU(B)− EU(A)− spos + sneg = 0

spos ≤M(1−Ψ)

sneg ≤MΨ

Mspos ≥ zq

Φ ≤ zq

a1, a2, a3, s
pos, sneg ≥ 0

Φ,Ψ ∈ {0, 1}.

Solving this model with BARON yields an optimal solution of Φ = 1 and (a1, a2, a3) =

(0.170, 197.714, 202.286). This solution is one of a set of alternative optimal solutions

that may exist. If desired, additional constraints can be added to the formulation

to preclude the identification of this optimal solution, and the perturbed instance

resolved to identify an alternative optimal solution. Such a process can be iteratively

repeated to explore the set of alternative optimal solutions.
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Appendix B. IISE Proceedings: Challenges and Solutions
with Exponentiation Constraints using Decision Variables

via the BARON Commercial Solver
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Challenges and Solutions with Exponentiation Constraints
using Decision Variables via the BARON Commercial Solver

William N. Caballero, Alexander G. Kline, and Brian J. Lunday
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Abstract

We observe and explore a persistent issue encountered with the commercial global optimization solver BARON,
wherein the solver falsely declares problem instances of a particular math programming formulation as infeasible.
Problematic to BARON, the formulation contains constraints having exponentiation with decision variables in both
the base and the exponent. We compare BARON’s performance for this math programming problem against other
commercial solvers, explore the potential cause of the false infeasible termination, and demonstrate how to mitigate
this error by perturbing the formulation.

Keywords
Global Optimization, BARON, Nonlinear Programming

1. Introduction
The Branch and Reduce Optimization Navigator (BARON) is a preeminent global optimization solver that utilizes
“constraint propagation, interval analysis, and duality in its reduce arsenal with advanced branch-and-bound optimiza-
tion concepts" to find optimal solutions to non-convex mathematical programming problems [1]. Foundational work
with respect to its nonlinear function relaxations, range reduction strategies, and branching methods was developed by
Tawarmalani and Sahinidis [2]. With specific regard to fractional programming problems (i.e., functions which can be
decomposed as the sum and products of univariate functions), the authors discuss methods to develop a convex relation
to a factorable function, and the creation of a polyhedral outer-approximation to this relaxation. That is, the described
methods serve to create a linear approximation of some factorable function by first creating a convex approximation
which is, in turn, approximated linearly with hyperplanes. The iterative application of these techniques incorporated
into a branch-and-bound framework with the node partitioning and fathoming rules set forth by Tawarmalani and
Sahinidis [2] form the foundation of BARON’s algorithmic procedure. The Sahinidis Group [3] provides a systematic
comparison of BARON to four other leading global optimization solvers on 1740 test instances which shows BARON
is able to solve instances much quicker than other commercial solvers. Extensive testing has also been conducted by
Neumaier et al. [4] who concluded that BARON is the fastest and most robust global solver currently available.

For these reasons, BARON has earned its developers much recognition, including the 2004 INFORMS Computing So-
ciety Prize and the 2006 Beale-Orchard-Hays Prize from the Mathematical Optimization Society [5, 6]. It is available
for use under a variety of algebraic modeling languages, including AIMMS, AMPL, and GAMS. Likewise, BARON
has been utilized for supply chain design, integrated process water networks, scheduling, molecular design, manufac-
turing, and healthcare [7–11]. Its reputation as a reliable and effective global solver is such that BARON is commonly
used as a benchmark for heuristics [12, 13].

Despite this success, Lastusilta et al.[14] suggest the solver AlphaECP outperforms BARON over the test instances
available in MINLPLib. Likewise, Neumaier et al. [4] reference errors wherein BARON falsely reports an instance as
infeasible. We expand upon these results by demonstrating a persistent issue encountered with BARON resulting in a
false declaration of infeasibility for a class of problems which have a constraint with a decision variable exponentiated
to another decision variable, henceforth referred to as a power program. In Section 2, we describe a specific power
program formulation inducing the error, examine the potential cause, and provide programmatic perturbations to
address it. Numerical tests in Section 3 illustrate the prevalence of these errors and the efficacy of our perturbations.
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2. Rank Dependent Power Program
The presented power program is related to multiple individuals being offered many risky prospects with the objective
to maximize the sum of perceived gain probabilities across all individuals. Concepts are borrowed from Cumulative
Prospect Theory (CPT) in this formulation in terms of ranking outcomes and probability distortion, but the programs
are meant to stand alone as an example and do not necessarily abide by the tenants of CPT [15]. Of note, we utilize
neither the concept of a reference point nor the cumulative probability weighting function.

We consider a scenario wherein individuals in a set I are offered a variety of prospects. Each individual i ∈ I is offered
ni prospects from a set Ji, each of which has mi j outcomes, indexed on the set Ki j. We assume an external decision
maker is able to alter the offered outcomes’ raw values and probabilities by some constant amount through some bi-
nary persuasion action. In doing so, this decision maker wishes to maximize the sum of perceived probabilities of
positive outcome values across all individuals and prospects. We continue by introducing the requisite parameters and
decision variables.

Parameters

x̂i jk : Baseline raw value for k-th outcome of prospect j for individual i before persuasion

p̂i jk : Baseline probability of k-th outcome of prospect j for individual i before persuasion

ε : Arbitrary sufficiently small positive real number

M : Arbitrary sufficiently large real number

f̂i jk : Persuasion effect on outcome k raw value for prospect j and individual i

ĝi jk : Persuasion effect on outcome k probability for prospect j and individual i

Primary Decision Variables

T+
i jkk′ : Equal to 1 if xi jk is the (mi j−1+ k′)th greatest gain for k = 1, ...,mi j ,

and 0 otherwise; defined for all (i, j) combinations

T−i jkk′ : Equal to 1 if xi jk is the (k′)th greatest loss for k = 1, ...,mi j,

and 0 otherwise; defined for all (i, j) combinations

γi : Gain distortion coefficient for individual i after persuasion

ai : Binary variable indicating action taken against individual i.

Equals one if action taken, zero otherwise.

Intermediate Decision Variables

xi jk : Gain/loss for individual i for k-th outcome of prospect j after persuasion

pi jk : Probability of k-th outcome of prospect j for individual i after persuasion

t+i jk′ : Ascending rank based list of xi jk gains corresponding with mapping T+
i jkk′

t−i jk′ : Ascending rank based list of xi jk losses corresponding with mapping T−i jkk′

b+i jk′ : Corresponding probabilities for sorted t+i jk′ outcomes

b−i jk′ : Corresponding probabilities for sorted t−i jk′ outcomes

π+
i jk′ : Distorted gain probability for i on kth outcome of prospect j after persuasion

Many of the intermediate decision variables could be eliminated and substituted with their explicit functional form in
the constraints. However, they are maintained for tractability purposes and to facilitate the performance of GAMS/BARON
in accordance with published documentation [16]. Using these sets, parameters, and decision variables, we define our
Rank Dependent Power Program.
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Rank Dependent Power Program - Base Model

max ∑
i∈I

∑
j∈Ji

∑
k′∈Ki j

π+
i jk′ (1a)

subject to

xi jk = x̂i jk +ai f̂i jk, ∀i ∈ I, j ∈ Ji, k ∈ Ki j (1b)

pi jk = p̂i jk +aiĝi jk, ∀i ∈ I, j ∈ Ji, k 6= mi j (1c)

pi jk = 1−
mi j−1

∑
l=1

pi jl , ∀i ∈ I, j ∈ Ji, k = mi j (1d)

mi j

∑
k=1

pi jk = 1, ∀i ∈ I, j ∈ Ji (1e)

mi j

∑
k=1

T+
i jkk′ +T−i jkk′ = 1, ∀i ∈ I, j ∈ Ji (1f)

mi j

∑
k′=1

T+
i jkk′ +T−i jkk′ = 1, ∀i ∈ I, j ∈ Ji (1g)

t+i jk′ =
mi j

∑
k=1

T+
i jkk′xi jk, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1h)

t−i jk′ =
mi j

∑
k=1

T−i jkk′xi jk, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1i)

t−i j(k′+1) ≥ t−i jk′ , ∀i ∈ I, j ∈ Ji, k = 1, ...,m j−1 (1j)

t+i j(k′+1) ≥ t+i jk′ , ∀i ∈ I, j ∈ Ji, k = 1, ...,m j−1 (1k)

t+i jk′ ≥ 0, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1l)

t−i jk′ ≤ 0, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1m)

b+i jk′ =
mi j

∑
k=1

T+
i jkk′ pi jk, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1n)

b−i jk′ =
mi j

∑
k=1

T−i jkk′ pi jk, ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1o)

π+
i jk′ = (b+i jk′)

γi , ∀i ∈ I, j ∈ Ji, k′ ∈ Ki j (1p)

ai ∈ {0,1},γi ≥ 1, ∀i ∈ I

T+
i jkk′ ,T

−
i jkk′ ∈ {0,1}, ∀i ∈ I, j ∈ Ji, k,k′ ∈ Ki j

The objective function (1a) maximizes the sum of distorted probabilities for gains across all individuals, prospects, and
outcomes. Constraints (1b) through (1e) serve to update the offered outcomes and their probabilities. Constraints (1f)
through (1o) ensure all prospects are sorted in ascending order and labeled as a gain or a loss depending on the values
of T+

i jkk′ and T−i jkk′ . Constraints (1f) through (1m) create the mappings, T+
i jkk′ and T−i jkk′ . Constraints (1f) and (1g) enforce

a bijective mapping. Constraints (1h) and (1i) perform the actual mapping calculation for outcomes, and Constraints
(1n) and (1o) do likewise for probabilities. Constraints (1j) and (1k) ensure the values are in ascending order, and
Constraints (1l) and (1m) enforce the positivity and negativity of gains and losses, respectively. Constraint (1p) serves
as an intermediate decision variable of the terms summed in the objective function. This equality is responsible for
converting the formulation into a power program.

For a given set of ai decision variables, Constraints (1b) – (1p) are completely determined. This is readily noted by
observing that the decision variables ai dictate the values of xi jk and pi jk, which in turn control all remaining decision
variables except γi. The values T+

i jkk′ and T+
i jkk′ are easily found by sorting the xi jk-values and observing their signs.

The remaining intermediate decision variables can then be found by simple calculation. Furthermore, this formulation
always has a feasible solution, regardless of parameter values. This can be observed from the following: (1) Constraints
(1b), (1c), (1d), and (1p) assign a value to free decision variables, and (2) A subset of these assignments is used in
Constraints (1f)–(1o) to assign more free variables or sort them in ascending order of their associated outcome.
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Using these results and observing that increasing γi always decreases the objective function value based on the domain
of b+i jk′ , finding an optimal solution to this program can be simplified to searching among all possible combinations
of ai decision variables. This combinatorial construct is not necessarily helpfully for large instances, but allows us to
easily find optimal solutions to small instances of the program for testing purposes.

BARON is unable to directly handle a function xy when both x and y are decision variables [17]. In order to process
such functions, GAMS/BARON transforms the function to ey log(x). However, the domains of the two functions are not
equivalent. For example, the original function is defined at x = 0, whereas the transformation is not.

In an effort to resolve this conflict, we introduce the reformulations A1 through A4. Each perturbation is based on the
hypothesis that pre-processing bounds for pi jk are not communicated to b+i jk′ and an error is triggered when BARON
observes the possibility of taking log(0). A1 removes the intermediate decision variable, against the general guidance
of GAMS documentation. However, by removing the intermediate decision variable, any error associated with its
bounds should be eliminated. A2 and A3 attempt to add a small real number to the intermediate decision variables in
(1p) to avoid a domain violation in the transformation. A4 provides a similar solution by lower bounding the sorted
probabilities by some very small real number. That is, b+i jk′ is explicitly stated as greater than zero. Strictly speaking,
such a lower bound makes the program infeasible. However, if chosen small enough (e.g.,1×10−16) , the lower bound
is essentially treated as a roundoff error while remaining defined in the transformed power function.

Alternative or Additional Constraints

A1 : π+
i jk′ =

mi j

∑
k=1

T−i jkk′ p
γi
i jk substituted for (1p)

A2 : π+
i jk′ = (b+i jk′ + ε)γi substituted for (1p)

A3 : π+
i jk′ = |b+i jk′ + ε|γi substituted for (1p)

A4 : b+i jk′ ≥ ε, b−i jk′ ≥ ε added to the base model

3. Testing and Analysis
We compare BARON’s performance on 100 instances of the base Rank Dependent Power Program with two individ-
uals each being offered two prospects, for which there respectively exist two potential outcomes, to that of five other
solvers. Of these five solvers, one is a global solver (i.e., SCIP) while the other four (i.e., DICOPT, LINDO, SSB,
and AlphaECP) are primarily used for solving convex MINLPs. The 100 random instances draw parameters from
the following distributions such that xi jk ∈ [−6500,6500], pi jk ∈ [0.01,0.99], and eγi log(b+i jk) is always defined: x̂i jk ∼
U[-5000,5000], p̂i jk ∼ U[0.25,0.75], f̂i jk ∼ U[-1500,1500], and ĝi jk ∼ U[-0.249,0.249]. To calculate the optimality
gap, the action space in each instance is enumerated and its effect on (1b) – (1p) manually calculated as previously
discussed.

Testing is performed on an HP ZBook equipped with a 2.70 GHz Intel i7-4800MQ processor and 32GB of RAM.
Each solver is provided a relative optimality termination criteria of 0.001, an iteration limit of 3000, and a time limit
of five minutes. Table 1 details the termination criterion invoked for each solver over the 100 random instances. Only
AlphaECP correctly identifies all instances as feasible. The global solvers BARON and SCIP struggle to find feasible
solutions and terminate with a conclusion of infeasibility for 100 and 85 instances, respectively. DICOPT does not
label any of the instances as infeasible but is only able to return a solution for 16 of the instances. SSB and LINDO
incorrectly terminate by designating 8 and 12 instances as infeasible, respectively. Taken collectively, the global
solvers appear to underperform their convex MINLP counterparts.

With regard to BARON, we compare the alternative formulations and examine the termination criterion. It can be
observed in Table 1 that A1, A3, and A4 all conclude that 95 instances are feasible. Surprisingly, alternative A2
concludes that only 2 instances are feasible. However, upon examination, the evaluation of the objective function
is found to be incorrect. These two observations are excluded from further analysis. We postulate the difference in
performance between A2 and A3 derives from the pre-processing technique utilized for the absolute value function.

Although the alternative formulations A1, A3, and A4 greatly improve performance, erroneous infeasible terminations
still occur. AlphaECP is the only solver which correctly identifies the feasibility of all instances. However, Table 1
shows that, for the instances BARON identifies as feasible, it has the lowest average optimality gap.
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Table 1: Feasibility and Optimality Comparisons
Solver # Feasible # Infeasible # Timed Out Avg RelGap Avg AbsGap

BARON (Base Model) 0 100 0 - -
BARON (A1) 95 5 0 0.59% 0.0141
BARON (A2) 2 98 0 - -
BARON (A3) 95 5 0 0.42% 0.0102
BARON (A4) 95 5 0 6.72% 0.1611

SCIP (Base Model) 15 85 0 36.68% 0.5227
DICOPT (Base Model) 16 0 84 37.18% 0.5525

AlphaECP (Base Model) 100 0 0 17.74% 0.3097
SSB (Base Model) 92 8 0 14.64% 0.3236

LINDO (Base Model) 84 12 4 17.68% 0.3798

4. Conclusions
We have examined a problem which belongs to the very challenging class of power programs. The program analyzed
proves to be problematic for the GAMS/BARON solver combination. In its base form, an incorrect infeasible termina-
tion is reached in the Rank Dependent Power Program for each of the hundred instances examined which is the worst
result over all solvers considered. These results are believed to be due to the GAMS/BARON transformation utilized
for xy when both x,y are decision variables. Accounting for this transformation, alternative formulations are examined
which yield promising results in terms of solution quality, but still conclude with incorrect infeasible terminations for
some instances.

Although, BARON is advertised as not requiring an initial seeded solution, for problems such as ours, it may be a
helpful tactic to mitigate the observed error. Since AlphaECP seemingly is the most effective software in terms of
finding a feasible solution, a combined approach of using AlphaECP to find a starting point which is then fed into
BARON may prove efficacious.

Fortunately, there always exists a feasible solution for the examined power program in this research. However, our
results demonstrate the potential for BARON to yield a false infeasible termination, which is problematic for instances
without a guarantee of feasibility. In order to mitigate this issue, we have provided a collection of programmatic
mitigation techniques for practitioner use.
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case. The second thread of research pertains to behavioral and behaviorally robust approaches to deterrence. Research in this thread makes 
two notable contributions. First, we demonstrate the alternative insights behavioral game theory generates for the analysis of classic 
deterrence games, and explicate the rich analysis generated from its combined use with standard equilibrium models. Second, we define 
behaviorally robust models for an agent to use in a normal form game under varying forms of uncertainty in order to inform deterrence 
policy decisions. 
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